
5G Toolbox™
Reference

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

5G Toolbox™ Reference
© COPYRIGHT 2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2018 Online only New for Version 1.0 (Release 2018b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions — Alphabetical List
1

System Objects — Alphabetical List
2

iii

Contents

Functions — Alphabetical List

1

nrPolarDecode
Polar decoding

Syntax
decbits = nrPolarDecode(rec,K,E,L)
decbits = nrPolarDecode(rec,K,E,L,padCRC)
decbits = nrPolarDecode(rec,K,E,L,nmax,iil,CRClen)

Description
decbits = nrPolarDecode(rec,K,E,L) decodes the rate-recovered input rec for an
(N,K) polar code, where N is the length of rec and K is the length of decoded bits
decbits, as specified in TS 38.212 Section 5 [1]. The function uses a cyclic redundancy
check (CRC)-aided successive-cancellation list decoder of length L. By default, output
deinterleaving is enabled, the maximum length of the input is 512, and the number of
appended CRC bits is 24. Use this syntax for downlink configuration.

decbits = nrPolarDecode(rec,K,E,L,padCRC) specifies whether the information
block on the transmit end was prepadded with ones before CRC encoding.

decbits = nrPolarDecode(rec,K,E,L,nmax,iil,CRClen) decodes the input with
a specified maximum length of 2nmax , output deinterleaving specified by iil, and number
of appended CRC bits specified by CRClen. This syntax assumes that the information
block on the transmit end was not prepadded with ones before CRC encoding.

• For downlink (DL) configuration, valid values for nmax, iil, and CRClen are 9, true,
and 24, respectively.

• For uplink (UL) configuration, valid values for nmax, iil, and CRClen are 10, false,
and 11, respectively.

Examples

1 Functions — Alphabetical List

1-2

Transmit and Decode Polar Encoded Data

Transmit polar-encoded block of data and decode it using successive-cancellation list
decoder.

Initial Setup

Create a channel that adds white Gaussian noise (WGN) to an input signal. Set the noise
variance to 1.5.

nVar = 1.5;
chan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

Create a binary phase shift keying (BSPK) modulator and demodulator.

bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('DecisionMethod', ...
 'Approximate log-likelihood ratio','Variance',nVar);

Simulate a Frame

Perform polar encoding of a random message of length K. The rate-matched output is of
length E.

K = 132;
E = 256;
msg = randi([0 1],K,1,'int8');
enc = nrPolarEncode(msg,E);

Modulate the polar encoded data using BSPK modulation, add WGN, and demodulate.

mod = bpskMod(enc);
rSig = chan(mod);
rxLLR = bpskDemod(rSig);

Perform polar decoding using successive-cancellation list decoder of length L.

L = 8;
rxBits = nrPolarDecode(rxLLR,K,E,L);

Determine the number of bit errors.

numBitErrs = biterr(rxBits,msg);
disp(['Number of bit errors: ' num2str(numBitErrs)])

Number of bit errors: 0

 nrPolarDecode

1-3

The transmitted and received messages are identical.

Input Arguments
rec — Rate-recovered input
column vector of real values

Rate-recovered input, specified as a column vector of real values. The input rec
represents the log-likelihood ratios per bit with a negative bipolar mapping. So a 0 is
mapped to 1, and a 1 is mapped to -1. The length of rec must be a power of two.
Data Types: single | double

K — Length of information block in bits
positive integer

Length of information block in bits, specified as a positive integer. K includes the CRC bits
if applicable
Data Types: double

E — Rate-matched output length in bits
positive integer

Rate-matched output length in bits, specified as a positive integer. E must be larger than
K, and E ≤ 8192.
Data Types: double

L — Length of decoding list
power of two

Length of decoding list, specified as a power of two.
Data Types: double

padCRC — Prepadding before CRC encoding
false (default) | true

Prepadding before CRC encoding, specified as false or true. Set padCRC to true if the
information block on the transmit end, before polar encoding, was prepadded with all
ones before CRC encoding.

1 Functions — Alphabetical List

1-4

Data Types: logical

nmax — Base-2 logarithm of rate-recovered input's maximum length
9 (default) | 10

Base-2 logarithm of rate-recovered input's maximum length, specified as 9 or 10.

• For DL configuration, specify 9.
• For UL configuration, specify 10.

If N is the length of rec in bits, N ≤ 2nmax, see TS 38.212 Section 5.3.1.2.
Data Types: double

iil — Output deinterleaving
true (default) | false

Output deinterleaving, specified as true or false.

• For DL configuration, specify true.
• For UL configuration, specify false.

Data Types: logical

CRClen — Number of appended CRC bits
24 (default) | 11

Number of appended CRC bits, specified as 24 or 11.

• For DL configuration, specify 24.
• For UL configuration, specify 11.

The numbers 24 and 11 correspond to the polynomials gCRC24C and gCRC11, as
described in TS 38.212. Section 5.1 [1].
Data Types: double

Output Arguments
decbits — Decoded message
column vector of binary values

 nrPolarDecode

1-5

Decoded message, returned as a K-by-1 column vector of binary values.
Data Types: int8

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

[2] Tal, I. and Vardy, A., “List decoding of Polar Codes“, IEEE Transactions on Information
Theory. Vol. 61, No. 5, pp. 2213-2226, May 2015.

[3] Niu, K., and Chen, K., “CRC-Aided Decoding of Polar Codes“, IEEE Communications
Letters, Vol. 16, No. 10, pp. 1668-1671, Oct. 2012.

[4] Stimming, A. B., Parizi, M. B., and Burg, A., “LLR-Based Successive Cancellation List
Decoding of Polar Codes“, IEEE Transaction on Signal Processing, Vol. 63, No. 19,
pp.5165-5179, 2015.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrCRCDecode | nrDCIDecode | nrPolarEncode | nrRateRecoverPolar

Topics
“5G New Radio Polar Coding”

Introduced in R2018b

1 Functions — Alphabetical List

1-6

nrPolarEncode
Polar encoding

Syntax
enc = nrPolarEncode(in,E)
enc = nrPolarEncode(in,E,nmax,iil)

Description
enc = nrPolarEncode(in,E) returns the polar-encoded output for the input message
in and rate-matched output length E as specified in TS 38.212 Section 5 [1]. By default,
input interleaving is enabled and the maximum length of the encoded message is 512.
Use this syntax for downlink configuration.

enc = nrPolarEncode(in,E,nmax,iil) encodes the input with a specified maximum
length of 2nmax and input interleaving specified by iil.

• For downlink (DL) configuration, valid values for nmax and iil are 9 and true,
respectively.

• For uplink (UL) configuration, valid values for nmax and iil are 10 and false,
respectively.

Examples

Perform Polar Encoding

Perform polar encoding of a random message of length K. E specifies the length of the
rate-matched output which is different from the length of the encoded message enc. The
length of enc is always a power of two.

K = 132;
E = 300;

 nrPolarEncode

1-7

msg = randi([0 1],K,1,'int8');
enc = nrPolarEncode(msg,E)

enc = 512x1 int8 column vector

 0
 0
 0
 0
 0
 0
 1
 1
 1
 0
 ⋮

Transmit and Decode Polar Encoded Data

Transmit polar-encoded block of data and decode it using successive-cancellation list
decoder.

Initial Setup

Create a channel that adds white Gaussian noise (WGN) to an input signal. Set the noise
variance to 1.5.

nVar = 1.5;
chan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

Create a binary phase shift keying (BSPK) modulator and demodulator.

bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('DecisionMethod', ...
 'Approximate log-likelihood ratio','Variance',nVar);

Simulate a Frame

Perform polar encoding of a random message of length K. The rate-matched output is of
length E.

1 Functions — Alphabetical List

1-8

K = 132;
E = 256;
msg = randi([0 1],K,1,'int8');
enc = nrPolarEncode(msg,E);

Modulate the polar encoded data using BSPK modulation, add WGN, and demodulate.

mod = bpskMod(enc);
rSig = chan(mod);
rxLLR = bpskDemod(rSig);

Perform polar decoding using successive-cancellation list decoder of length L.

L = 8;
rxBits = nrPolarDecode(rxLLR,K,E,L);

Determine the number of bit errors.

numBitErrs = biterr(rxBits,msg);
disp(['Number of bit errors: ' num2str(numBitErrs)])

Number of bit errors: 0

The transmitted and received messages are identical.

Input Arguments
in — Input message
column vector of binary values

Input message, specified as a column vector of binary values. in includes the CRC bits if
applicable.
Data Types: double | int8

E — Rate-matched output length in bits
positive integer

Rate-matched output length in bits, specified as a positive integer. E must be larger than
the length of the input message in, and E ≤ 8192.
Data Types: double

 nrPolarEncode

1-9

nmax — Base-2 logarithm of the encoded message's maximum length
9 (default) | 10

Base-2 logarithm of the encoded message's maximum length, specified as 9 or 10.

• For DL configuration, specify 9.
• For UL configuration, specify 10.

If N is the length of the polar-encoded message in bits, then N ≤ 2nmax. See TS 38.212
Section 5.3.1.2 [1].
Data Types: double

iil — Input interleaving
true (default) | false

Input interleaving, specified as true or false.

• For DL configuration, specify true.
• For UL configuration, specify false.

Data Types: logical

Output Arguments
enc — Polar-encoded message
column vector of binary values

Polar-encoded message, returned as a column vector of binary values. enc inherits its
data type from the input message in.

The length of the polar-encoded message, N, is a power of two. For more information, see
TS 38.212 Section 5.3.1.

• For DL configuration, N ≤ 512.
• For UL configuration, N ≤ 1024.

Data Types: double | int8

1 Functions — Alphabetical List

1-10

Limitations
The nrPolarEncode function assumes nPC = 0 and does not support non-zero parity-
check bits, see TS 38.212 Section 5.3.1.2 [1]. The parity-check bits apply only for UL and
input message of length K, where 18 ≤ K ≤ 25.

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network..

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrCRCEncode | nrDCIEncode | nrPolarDecode | nrRateMatchPolar

Topics
“5G New Radio Polar Coding”

Introduced in R2018b

 nrPolarEncode

1-11

nrRateMatchPolar
Polar rate matching

Syntax
rm = nrRateMatchPolar(enc,K,E)
rm = nrRateMatchPolar(enc,K,E,ibil)

Description
rm = nrRateMatchPolar(enc,K,E) returns the rate-matched output of length E for
the polar-encoded input enc and information block length K, as specified in TS 38.212
Section 5.4.1 [1]. In this syntax, coded-bit interleaving is disabled. Use this syntax for
downlink (DL) configuration.

rm = nrRateMatchPolar(enc,K,E,ibil) controls coded-bit interleaving. To enable
coded-bit interleaving, set ibil to true. Use this syntax for uplink (UL) configuration
with coded-bit interleaving enabled.

Examples

Perform Polar Rate Matching

Create a polar encoded random block of 512 bits and perform polar rate matching.
Specify an information block of 56 bits and a rate-matched output of 864 bits.

N = 2^9;
K = 56;
E = 864;
in = randi([0 1],N,1);
out = nrRateMatchPolar(in,K,E)

out = 864×1

1 Functions — Alphabetical List

1-12

 1
 1
 0
 1
 1
 0
 0
 1
 1
 1
 ⋮

Input Arguments
enc — Polar-encoded message
column vector of binary values

Polar-encoded message, specified as a column vector of binary values.

The length of the polar-encoded message, N, is a power of two. For more information, see
TS 38.212 Section 5.3.1.

• For DL configuration, N ≤ 512.
• For UL configuration, N ≤ 1024.

Data Types: double | int8

K — Length of information block in bits
positive integer

Length of information block in bits, specified as a positive integer. K includes the CRC bits
if applicable
Data Types: double

E — Rate-matched output length in bits
positive integer

Rate-matched output length in bits, specified as a positive integer. E must be larger than
K, and E ≤ 8192.

 nrRateMatchPolar

1-13

Data Types: double

ibil — Coded-bit interleaving
false (default) | true

Coded-bit interleaving, specified as false or true.

• For DL configuration, specify false.
• For UL configuration, specify true.

Data Types: logical

Output Arguments
rm — Rate-matched output data
column vector of binary values

Rate-matched output data, returned as an E-by-1 column vector of binary values. rm
inherits its data type from the encoded message enc.
Data Types: double | int8

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-14

See Also
Functions
nrCRCEncode | nrDCIEncode | nrPolarEncode | nrRateRecoverPolar

Topics
“5G New Radio Polar Coding”

Introduced in R2018b

 nrRateMatchPolar

1-15

nrRateRecoverPolar
Polar rate recovering

Syntax
rec = nrRateRecoverPolar(llr,K,N)
rec = nrRateRecoverPolar(llr,K,N,ibil)

Description
rec = nrRateRecoverPolar(llr,K,N) returns the rate-recovered output of length N
for the soft input llr and information block length K, as specified in TS 38.212 Section
5.4.1 [1]. In this syntax, coded-bit deinterleaving is disabled. Use this syntax for downlink
(DL) configuration.

rec = nrRateRecoverPolar(llr,K,N,ibil) controls coded-bit deinterleaving. To
enable coded-bit deinterleaving, set ibil to true. Use this syntax for uplink (UL)
configuration with coded-bit deinterleaving enabled.

Examples

Perform Polar Rate Recovery

Create a polar encoded random block of 512 bits and perform polar rate matching using
nrRateMatchPolar. Perform polar rate recovery. Verify the results are identical to the
original polar encoded input.

Specify an information block of 56 bits and an output of 864 bits for rate matching.

N = 512;
K = 56;
E = 864;
in = randi([0 1],N,1);
rateMatched = nrRateMatchPolar(in,K,E);

1 Functions — Alphabetical List

1-16

Perform rate recovery of the rate-matched data and information block of 56 bits. The
length of the rate-recovered output, N, is the same as the length of the original polar
encoded message.

rateRecovered = nrRateRecoverPolar(rateMatched,K,N);

Verify that the rate recovered output is identical to the original polar encoded input in.

isequal(rateRecovered,in)

ans = logical
 1

Input Arguments
llr — Log-likelihood ratio value input
column vector of real values

Log-likelihood ratio value input, specified as a column vector of real values. llr is the
soft-demodulated input of length E, the same length as the rate-matched data vector
before modulation.
Data Types: single | double

K — Length of information block in bits
positive integer

Length of information block in bits, specified as a positive integer. K includes the CRC bits
if applicable
Data Types: double

N — Length of polar-encoded message in bits
power of two

Length of polar-encoded message in bits, specified as a power of two.

• N ≤ 512 for DL configuration.
• N ≤ 1024 for UL configuration.

For more details, see TS 38.212 Section 5.3.1 [1].

 nrRateRecoverPolar

1-17

Data Types: double

ibil — Coded-bit deinterleaving
false for DL (default) | true for UL

Coded-bit deinterleaving, specified as false or true.

• For DL configuration, specify false.
• For UL configuration, specify true.

Data Types: logical

Output Arguments
rec — Rate-recovered output
column vector of real numbers

Rate-recovered output, returned as an N-by-1 column vector of real numbers.
Data Types: single | double

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrCRCDecode | nrDCIDecode | nrPolarDecode | nrRateMatchPolar

1 Functions — Alphabetical List

1-18

Topics
“5G New Radio Polar Coding”

Introduced in R2018b

 nrRateRecoverPolar

1-19

nrCRCDecode
Decode and remove cyclic redundancy check (CRC)

Syntax
[blk,err] = nrCRCDecode(blkcrc,poly)
[blk,err] = nrCRCDecode(blkcrc,poly,mask)

Description
[blk,err] = nrCRCDecode(blkcrc,poly) checks the input data blkcrc for a CRC
error. The function assumes that the input data comprises the CRC parity bits associated
with the polynomial poly. The function returns blk, which is the data part of the input
blkcrc. The function also returns err, which is the logical difference (XOR) between the
CRC comprised in the input and the CRC recalculated across the data part of the input. If
err is not equal to 0, either an error has occurred or the input CRC has been masked. For
details on the associated polynomials, see TS 38.212 Section 5.1 [1].

[blk,err] = nrCRCDecode(blkcrc,poly,mask) XOR-masks the CRC difference
with mask before returning it in err. The mask value is applied to the CRC difference
with the most significant bit (MSB) first to the least significant bit (LSB) last.

Examples

Check Data Block for CRC Error

Check the effect of CRC decoding with and without a mask.

Define a mask corresponding to the radio network temporary identifier (RNTI) equal to
12. Append RNTI-masked CRC parity bits to an all-ones matrix of one data block.

rnti = 12;
blkCrc = nrCRCEncode(ones(100,1),'24C',rnti);

1 Functions — Alphabetical List

1-20

When you perform CRC decoding without a mask, err1 is equal to the RNTI because the
CRC was masked during coding. The logical difference between the original CRC and the
recalculated CRC is the CRC mask.

[blk,err1] = nrCRCDecode(blkCrc,'24C');
err1

err1 =

 uint32

 12

When you perform CRC decoding using the RNTI value as a mask, err is equal to 0.

[blk,err2] = nrCRCDecode(blkCrc,'24C',err1);
err2

err2 =

 uint32

 0

Input Arguments
blkcrc — CRC encoded data
matrix of real numbers

CRC encoded data, specified as a matrix of real numbers. Each column of the matrix is
considered as a separate CRC encoded data block.
Data Types: double | int8 | logical

poly — CRC polynomial
'6' | '11' | '16' | '24A' | '24B' | '24C'

CRC polynomial, specified as '6', '11', '16', '24A', '24B', or '24C'. For details on
the associated polynomials, see TS 38.212 Section 5.1.
Data Types: char | string

mask — XOR mask
0 (default) | nonnegative integer

 nrCRCDecode

1-21

XOR mask, specified as a nonnegative integer. The mask is typically a radio network
temporary identifier (RNTI).
Data Types: double

Output Arguments
blk — CRC decoded data
matrix of real numbers

CRC decoded data, returned as a matrix of real numbers. blk is the data-only part of the
input blkcrc.
Data Types: double | int8 | logical

err — Logical CRC difference
integer

Logical CRC difference, returned as an integer. err is the logical difference between the
CRC comprised in the input blkcrc and the CRC recalculated across the data part of the
input. If a mask is specified, the function XOR-masks err with mask before returning it.
Data Types: uint32

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-22

See Also
Functions
nrBCHDecode | nrCRCEncode | nrCodeBlockDesegmentLDPC | nrDCIDecode |
nrLDPCDecode | nrPolarDecode | nrRateRecoverLDPC | nrRateRecoverPolar

Introduced in R2018b

 nrCRCDecode

1-23

nrCRCEncode
Calculate and append cyclic redundancy check (CRC)

Syntax
blkcrc = nrCRCEncode(blk,poly)
blkcrc = nrCRCEncode(blk,poly,mask)

Description
blkcrc = nrCRCEncode(blk,poly) calculates the CRC defined by the polynomial
poly for the input data blk. The function returns the CRC encoded data, which is a copy
of the input data with the CRC parity bits appended. For details on the associated
polynomials, see TS 38.212 Section 5.1 [1].

blkcrc = nrCRCEncode(blk,poly,mask) applies a logical difference (XOR) mask on
the appended CRC bits with the integral value of mask. The appended CRC bits in
blkcrc are XOR-masked with the most significant bit (MSB) first to the least significant
bit (LSB) last. The masked CRC is of the form (p0 xor m0), (p1 xor m1),…, (pL-1 xor mL-1),
where L is the number of parity bits, and p0 and m0 are the MSBs in the binary
representation of CRC and mask, respectively. If the mask value is greater than 2L - 1, the
L LSBs are considered for the mask.

Examples

Calculate and Append CRC

Calculate and append CRC parity bits to an all-zeros matrix of two data blocks. The result
is an all-zeros matrix of size 124-by-2.

blkcrc = nrCRCEncode(zeros(100,2),'24C');
any(blkcrc(:,1:2));

1 Functions — Alphabetical List

1-24

Calculate and Append Masked CRC

Calculate and append masked CRC parity bits to an all-zeros matrix of two data blocks.
The appended CRC bits are XOR-masked with the specified mask, from the MSB first to
the LSB last. The result is an all-zeros matrix apart from the elements in the last position.

mask = 1;
blkcrc = nrCRCEncode(zeros(100,2),'24C',mask);
blkcrc(end-5:end,1:2);

ans =

 0 0
 0 0
 0 0
 0 0
 0 0
 1 1

Input Arguments
blk — Input data
matrix of real numbers

Input data, specified as a matrix of real numbers. Each column of the matrix is treated as
a separate data block.
Data Types: double | int8 | logical

poly — CRC polynomial
'6' | '11' | '16' | '24A' | '24B' | '24C'

CRC polynomial, specified as '6', '11', '16', '24A', '24B', or '24C'. For details on
the associated polynomials, see TS 38.212 Section 5.1.
Data Types: char | string

mask — XOR mask
0 (default) | nonnegative integer

XOR mask, specified as a nonnegative integer. The mask is typically a radio network
temporary identifier (RNTI).

 nrCRCEncode

1-25

Data Types: double

Output Arguments
blkcrc — CRC encoded data
matrix of real numbers

CRC encoded data, returned as a matrix of real numbers. blkcrc is a copy of the input
blk with the CRC parity bits appended. Each column corresponds to a separate CRC
encoded code block. blkcrc inherits its data type from the input blk.
Data Types: double | int8 | logical

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrBCH | nrCRCDecode | nrCodeBlockSegmentLDPC | nrDCIEncode | nrLDPCEncode |
nrPolarEncode | nrRateMatchLDPC | nrRateMatchPolar

Introduced in R2018b

1 Functions — Alphabetical List

1-26

nrLDPCDecode
Low-density parity-check decoding

Syntax
[out,actNumIter,finalParityChecks] = nrLDPCDecode(in,bgn,maxNumIter)
[out,actNumIter,finalParityChecks] = nrLDPCDecode(___ ,Name,Value)

Description
[out,actNumIter,finalParityChecks] = nrLDPCDecode(in,bgn,maxNumIter)
returns the LDPC-decoded output matrix out for the input data matrix in, base graph
number bgn, and maximum number of decoding iterations maxNumIter. The function
also returns the actual number of iterations actNumIter and the final parity checks per
codeword finalParityChecks.

[out,actNumIter,finalParityChecks] = nrLDPCDecode(___ ,Name,Value)
returns the LDPC-decoded output matrix with additional name-value pairs, in addition to
the input arguments in previous syntax.

The decoder uses the sum-product message-passing algorithm. The data bits must be
LDPC-encoded as defined in TS 38.212 Section 5.3.2 [1].

Examples

Decode Low-Density Parity-Check Codeword

Encode two code block segments, each with length 2560. Include 36 filler bits at the end.
Use a base graph number of 2.
bgn = 2; % Base graph nuumber
K = 2560; % Code block segment length
F = 36; % Number of filler bits per code block
C = 2; % Number of code blocks
txcbs = ones(K-F,C);

 nrLDPCDecode

1-27

fillers = -1*ones(F,C);
txcbs = [txcbs;fillers]; % Add fillers
txcodedcbs = nrLDPCEncode(txcbs,bgn); % Encode
rxcodedcbs = double(1-2*txcodedcbs); % Convert to soft bits
FillerIndices = find(txcodedcbs(:,1) == -1);
rxcodedcbs(FillerIndices,:) = 0; % Fillers have no LLR information

Decode the encoded codeword with a maximum of 25 iterations.

[rxcbs,actualniters] = nrLDPCDecode(rxcodedcbs,bgn,25);

txcbs(end-F+1:end,:) = 0; % Replace filler bits with 0

isequal(rxcbs,txcbs)
actualniters

ans =

 logical

 1

actualniters =

 1 1

Input Arguments
in — Rate recovered soft bits for input code block segments
matrix

Rate recovered soft bits for input code block segments, specified as a matrix.

The number of columns in in is equal to the number of scheduled code block segments.
The number of rows in in is equal to the length of the codeword, with some systematic
bits punctured.
Data Types: double | single

bgn — Base graph number
1 | 2

Base graph number, specified as a scalar of value 1 or 2. The value selects one of the two
base graphs defined in TS 38.212 Section 5.3.2 [1].

1 Functions — Alphabetical List

1-28

Data Types: double

maxNumIter — Maximum number of decoding iterations
scalar

Maximum number of decoding iterations, specified as a scalar. The decoding is
terminated when all parity checks are satisfied, or until after maxNumIter number of
iterations are completed.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [out,actNumIter,finalParityChecks] =
nrLDPCDecode(in,bgn,maxNumIter,'DecisionType','hard')

OutputFormat — Output format
'info' (default) | 'whole'

Output format, specified as 'info' or 'whole'.

If 'OutputFormat' is specified as 'info', the number of rows in out is equal to the length
of the information bits.

If 'OutputFormat' is specified as 'whole', the number of rows in out is equal to the
length of the codeword.
Data Types: character string

DecisionType — Decision method used for decoding
'hard' (default) | 'soft'

Decision method used for decoding, specified as 'hard' or 'soft'.

If 'DecisionType' is specified as 'hard', out contains 'int8' type decoded bits.

If 'DecisionType' is specified as 'soft', out contains log-likelihood ratios of the same
data type as in.

 nrLDPCDecode

1-29

Data Types: character string

Termination — Decoding termination criteria
'early' (default) | 'max'

Decoding termination criteria, specified as 'early' or 'max'.

If 'Termination' is specified as 'early', decoding terminates when all parity checks are
satisfied, or until maxNumIter number of iterations are completed.

If 'Termination' is specified as 'max', decoding terminates after maxNumIter number
of iterations.
Data Types: character string

Output Arguments
out — Decoded LDPC codeword
matrix

Decoded LDPC codeword or information bits (default), returned as a matrix.

The number of columns in out is equal to the number of scheduled code block segments.
The number of rows in out depends on the name-value pair argument 'OutputFormat'.

• When 'OutputFormat' is specified as 'info', the number of rows in out is the
number of information bits in an LDPC codeword.

• When 'OutputFormat' is specified as 'whole', the number of rows in out is equal
to the length of an LDPC codeword.

The data type of the output depends on the name-value pair argument 'DecisionType'.

• When 'DecisionType' is specified as 'hard', the data type of out is int8.
• When 'DecisionType' is specified as 'soft', the data type of out is same as in.

Data Types: single | double | int8

actNumIter — Actual number of iterations
row vector | scalar

Actual number of iterations, returned as a row vector of positive integer(s).

1 Functions — Alphabetical List

1-30

The length of actNumIter is equal to the number of columns in in. The ith element in
actNumIter corresponds to the actual number of iterations executed for ith column of
in.
Data Types: double

finalParityChecks — Final parity checks
matrix

Final parity checks, returned as a matrix.

The number of rows in finalParityChecks is equal to the number of parity-check bits
in an LDPC codeword. The ith column in finalParityChecks corresponds to the final
parity checks for the ith codeword.
Data Types: double

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrCRCDecode | nrCodeBlockDesegmentLDPC | nrDLSCHInfo | nrLDPCEncode |
nrRateRecoverLDPC

Introduced in R2018b

 nrLDPCDecode

1-31

nrLDPCEncode
Low-density parity-check (LDPC) encoding

Syntax
out = nrLDPCEncode(in,bgn)

Description
out = nrLDPCEncode(in,bgn) returns the LDPC-encoded output matrix for the input
data matrix in and base graph number bgn, as specified in TS 38.212 Section 5.3.2 [1].

If filler bits, represented by -1, are present in the input in before encoding, they are
replaced by 0s. After encoding, the filler bits are again replaced by -1s.

The encoding includes puncturing of some of the systematic information bits.

Examples

Generate Low-Density Parity-Check Codeword

LDPC-encode two code block segments, each with length 2560. Include 36 filler bits at
the end. Use a base graph number of 2.

bgn = 2; % Base graph number
K = 2560; % Code block segment length
F = 36; % Number of filler bits per code block segment
C = 2; % Number of code blocks
cbs = ones(K-F,C);
fillers = -1*ones(F,C);
cbs = [cbs;fillers]; % Input data for encoding
codedcbs = nrLDPCEncode(cbs,bgn);
size(codedcbs)

1 Functions — Alphabetical List

1-32

ans =

 12800 2

Input Arguments
in — Code block segments before encoding
matrix | column vector

Code block segments before encoding, specified as a matrix or a column vector.

The number of columns in in is equal to the number of scheduled code block segments in
the transport block. The number of rows in in is equal to the length of the code block
segment, including the filler bits, if any.

Note Filler bits are represented by -1 and treated as 0 when performing encoding.

Data Types: double | int8

bgn — Base graph number
1 | 2

Base graph number, specified as a scalar of value 1 or 2. The values correspond to the
two base graphs defined in TS 38.212 Section 5.3.2 [1]
Data Types: double

Output Arguments
out — Encoded LDPC codeword
matrix

Encoded LDPC codeword output, returned as a matrix.

The number of columns in out is equal to the number of scheduled code block segments
in the transport block. The number of rows in out is equal to the length of the codeword.
Each of the codeword punctures some of the systematic bits and can contain filler bits.
Data Types: double | int8

 nrLDPCEncode

1-33

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrCRCEncode | nrCodeBlockSegmentLDPC | nrDLSCHInfo | nrLDPCDecode |
nrRateMatchLDPC

Introduced in R2018b

1 Functions — Alphabetical List

1-34

nrRateMatchLDPC
Low-density parity-check (LDPC) rate matching

Syntax
out = nrRateMatchLDPC(in,outlen,rv,mod,nLayers)
out = nrRateMatchLDPC(___ ,Nref)

Description
out = nrRateMatchLDPC(in,outlen,rv,mod,nLayers) returns the rate-matched
output out of length outlen for input data matrix in with specified redundancy version
rv, modulation type mod, and total number of transmission layers nLayers. The internal
buffer used for the soft input has no size limits.

nrRateMatchLDPC includes the stages of bit selection and interleaving defined for LDPC-
encoded data and code block concatenation, as specified in TS 38.212 Sections 5.4.2 and
5.5 [1].

out = nrRateMatchLDPC(___ ,Nref) returns the rate-matched output for a limited
soft buffer size Nref, in addition to the input arguments in the previous syntax. Nref is
defined in TS 38.212 Section 5.4.2.1 [1].

Examples

Perform Rate-Matching of Two LDPC-Encoded Code Blocks

Perform rate-matching of two LDPC-encoded code blocks of length 3960 to a vector of
length 8000. Use a single transmission layer with QPSK modulation with redundancy
version 0.

rv = 0;
mod = 'QPSK';
nLayers = 1;

 nrRateMatchLDPC

1-35

encoded = ones(3960,2);
outlen = 8000;
ratematched = nrRateMatchLDPC(encoded,outlen,rv,mod,nLayers);
size(ratematched)

ans =

 8000 1

Observe Output Locations in Rate-Matched Code Blocks

Input some integer ramps as separate code blocks to the rate matching and observe the
output locations after rate matching.

rv = 0;
in = [0 1000 2000] + (1:66*10)';
out = nrRateMatchLDPC(in,3000,rv,'QPSK',1);
plot(out,'.-')

1 Functions — Alphabetical List

1-36

Input Arguments
in — LDPC-encoded input data
matrix

LDPC-encoded input data, specified as a matrix.

Each column of in is a codeword. The number of columns in the input argument in is
equal to the number of scheduled code blocks in a transport block. Each column is rate-
matched separately, and the results are concatenated in out.
Data Types: double | int8

 nrRateMatchLDPC

1-37

outlen — Length of output vector
positive integer scalar

Length of the rate-matched and concatenated output vector, specified as a positive
integer scalar. outlen is the total number of coded bits available for transmission of the
transport block, as specified in TS 38.212 Section 5.4.2.1 [1].
Data Types: double

rv — Redundancy version
0-3 | positive integer scalar

Redundancy version, specified as a positive integer scalar between 0 and 3.
Data Types: double

mod — Modulation scheme
pi/2-BPSK | QPSK | 16QAM | 64QAM | 256QAM

Modulation scheme, specified as one of the following: pi/2-BPSK, QPSK, 16QAM, 64QAM,
256QAM.
Data Types: character string

nLayers — Number of transmission layers
1-4 | positive integer scalar

Total number of transmission layers associated with the transport block, specified as a
positive integer scalar between 1 and 4.
Data Types: double

Nref — Parameter used for limited buffer rate matching
integer scalar

Parameter used for limited buffer rate matching, specified as an integer scalar. Nref is
defined in TS 38.212 Section 5.4.2.1 [1].
Data Types: double

1 Functions — Alphabetical List

1-38

Output Arguments
out — Rate-matched and concatenated code blocks for transport block
vector

Rate-matched and concatenated code blocks for a transport block, returned as a vector
with length outlen.
Data Types: double | int8

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrCRCEncode | nrCodeBlockSegmentLDPC | nrLDPCEncode | nrRateRecoverLDPC

Introduced in R2018b

 nrRateMatchLDPC

1-39

nrRateRecoverLDPC
Low-density parity-check (LDPC) rate recovery

Syntax
out = nrRateRecoverLDPC(in,trblklen,R,rv,mod,nLayers)
out = nrRateRecoverLDPC(___ ,numCB)
out = nrRateRecoverLDPC(___ ,numCB,Nref)

Description
out = nrRateRecoverLDPC(in,trblklen,R,rv,mod,nLayers) returns the rate-
recovered output representing the LDPC-encoded code blocks for input data vector in
with specified transport block length trblklen, target code rate R, redundancy version
rv, modulation type mod, and total number of transmission layers nLayers. The internal
buffer used for the soft input has no size limits, and the output contains the total number
of code blocks.

nrRateRecoverLDPC is the inverse of nrRateMatchLDPC and performs the inverse of
the code block concatenation, bit interleaving, and bit selection stages at the receiver
end.

out = nrRateRecoverLDPC(___ ,numCB) specifies the number of code blocks numCB
to be recovered, in addition to the input arguments in the previous syntax.

out = nrRateRecoverLDPC(___ ,numCB,Nref) returns the rate-recovered output for
a limited soft buffer size Nref with the specified number of code blocks numCB to recover,
in addition to the input arguments in the first syntax. Nref is defined in TS 38.212
Section 5.4.2.1 [1].

Examples

1 Functions — Alphabetical List

1-40

Perform Rate-Recovery of Input Vector to Code Block

Perform rate-recovery of an input vector of 4500 bits to a code block. Use a single
transmission layer with QPSK modulation with redundancy version 0. The length of the
original transport block is 4000, and the number of scheduled block segments is 1.

R = 0.5; % Target code rate
trblklen = 4000; % Transport block length
rv = 0; % Redundancy version
mod = 'QPSK'; % Modulation type
nlayers = 1; % Number of layers
numCB = 1; % Number of scheduled code blocks

sbits = ones(4500,1);
raterec = nrRateRecoverLDPC(sbits,trblklen,R,rv,mod,nlayers,numCB);
size(raterec)

ans =

 12672 1

Input Arguments
in — Received soft bits before code block desegmentation
vector

Received soft bits before code block desegmentation, specified as a vector.
Data Types: double | single

trblklen — Original transport block length
nonnegative integer scalar

Original transport block length, specified as a nonnegative integer scalar.
Data Types: double

R — Target code rate
(0,1) | real scalar

Target code rate, specified as a real scalar where 0<R<1.
Data Types: double

 nrRateRecoverLDPC

1-41

rv — Redundancy version
0-3 | positive integer scalar

Redundancy version, specified as a positive integer scalar between 0 and 3.
Data Types: double

mod — Modulation scheme
pi/2-BPSK | QPSK | 16QAM | 64QAM | 256QAM

Modulation scheme, specified as one of the following: pi/2-BPSK, QPSK, 16QAM, 64QAM,
256QAM.
Data Types: character string

nLayers — Number of transmission layers
1-4 | positive integer scalar

Total number of transmission layers associated with the transport block, specified as a
positive integer scalar between 1 and 4.
Data Types: double

numCB — Number of scheduled code block segments
positive integer scalar

Number of scheduled code block segments, specified as a positive integer scalar. numCB is
less than or equal to the number of code block segments for a transport block.
Data Types: double

Nref — Parameter used for limited buffer rate matching
integer scalar

Parameter used for limited buffer rate matching, specified as an integer scalar. Nref is
defined in TS 38.212 Section 5.4.2.1 [1].
Data Types: double

Output Arguments
out — Rate-recovered scheduled code block segments
matrix

1 Functions — Alphabetical List

1-42

Rate-recovered scheduled code segments, returned as a matrix.

The number of rows in out is calculated from trblklen and R. The number of columns
in out is equal to numCB, or the total number of code blocks for a transport block. Filler
bits are set to Inf to correspond to zeros used during their encoding.
Data Types: double | single

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrCRCDecode | nrCodeBlockSegmentLDPC | nrLDPCDecode | nrRateMatchLDPC

Introduced in R2018b

 nrRateRecoverLDPC

1-43

nrCodeBlockSegmentLDPC
LDPC code block segmentation and CRC attachment

Syntax
cbs = nrCodeBlockSegmentLDPC(blk,bgn)

Description
cbs = nrCodeBlockSegmentLDPC(blk,bgn) splits the input data block blk into code
block segments based on the base graph number bgn, as specified in TS 38.212 Section
5.2.2 [1]. The function appends cyclic redundancy check (CRC) and filler bits to each code
block segment in cbs (if applicable). nrCodeBlockSegmentLDPC provides input to low-
density parity-check (LDPC) coders in transport channels, including downlink and uplink
shared channels, and paging channels.

Examples

LDPC Code Block Segmentation

Create a random sequence of binary input data. Perform code block segmentation. When
the base graph number is 1, the segmentation results in one code block segment. When
the base graph number is 2, the segmentation results in two code block segments.
Segmentation occurs only if the input length is greater than the maximum code block
size. The maximum code block size is 8448 when the base graph number is 1 and 3840
when the base graph number is 2.

in = randi([0,1],4000,1);
cbs1 = nrCodeBlockSegmentLDPC(in,1);
cbs2 = nrCodeBlockSegmentLDPC(in,2);
size(cbs1)
size(cbs2)

ans =

1 Functions — Alphabetical List

1-44

 4224 1

ans =

 2080 2

Display Index Mapping of LDPC Code Block Segmentation

Create a ramp data input and perform code block segmentation. The input of length 4000
is split into two code block segments of equal size with 24B CRC and filler bits attached.
To see how the input maps onto the output, plot the input data indices relative to the
corresponding code block segment indices.

cbs = nrCodeBlockSegmentLDPC([1:4000]',2);
plot(cbs)
legend('CBS1','CBS2')
xlabel('Code Block Bit Indices');
ylabel('Input Data Bit Indices + CRC/Filler');
title('Code Block Segmentation Operation')

 nrCodeBlockSegmentLDPC

1-45

Input Arguments
blk — Input data block
column vector of real numbers

Input data block, specified as a column vector of real numbers.
Data Types: double | int8 | logical

bgn — Base graph number
1 | 2

Base graph number, specified as 1 or 2.

1 Functions — Alphabetical List

1-46

Data Types: double

Output Arguments
cbs — Code block segments
integer or real matrix

Code block segments, returned as an integer or real matrix. Each column corresponds to
a separate code block segment. The number of code block segments depends on the
maximum code block size of the LDPC coder, Kcb, and the length of the input blk, B. If
bgn is set to 1, Kcb = 8448. If bgn is set to 2, Kcb = 3840. If B ≤ Kcb, then the function
does not perform segmentation and does not append CRC to the resulting code block. If B
> Kcb, the segmentation results in several smaller code blocks with a type-24B CRC bits
appended.

The function appends filler bits to each code block (with or without CRC) if necessary. The
filler bits ensure that the code block segments entering the LDPC coder have a valid
length and are a multiple of the LDPC lifting size. To accommodate the filler bits
represented by –1, the data type of cbs is cast to int8 when the input blk is logical.
Otherwise, cbs inherits the data type of the input blk.
Data Types: double | int8

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 nrCodeBlockSegmentLDPC

1-47

See Also
Functions
nrCodeBlockDesegmentLDPC | nrLDPCEncode | nrLDPCEncode | nrRateMatchLDPC |
nrRateMatchLDPC

Introduced in R2018b

1 Functions — Alphabetical List

1-48

nrCodeBlockDesegmentLDPC
LDPC code block desegmentation and CRC decoding

Syntax
[blk,err] = nrCodeBlockDesegmentLDPC(cbs,bgn,blklen)

Description
[blk,err] = nrCodeBlockDesegmentLDPC(cbs,bgn,blklen) concatenates the
input code block segments cbs into a single output data block blk of length blklen. The
function validates the data dimensions of the input cbs based on the specified base graph
number bgn and output block length blklen. The function removes any filler bits and
type-24B cyclic redundancy check (CRC) bits present in the input cbs. The output err is
the result of the type-24B CRC decoding (if applicable). This process is the inverse of the
low-density parity-check (LDPC) code block segmentation specified in TS 38.212 Section
5.2.2 [1] and implemented in nrCodeBlockSegmentLDPC.

Examples

Back-to-Back LDPC Code Block Segmentation and Desegmentation

Perform code block segmentation of a random sequence of binary input data. When the
base graph number is 1, segmentation occurs whenever the input length is greater than
8448. The input data of length 10000 is split into two code block segments of length 5280.
The code block segments have filler bits and CRC attached. Concatenate the code block
segments using nrCodeBlockDesegmentLDPC. The concatenated result is of the same
size as the original input with CRC and filler bits removed. Check whether the CRC
decoding was successful by checking the error vector.

bgn = 1;
blklen = 10000;
cbs = nrCodeBlockSegmentLDPC(randi([0 1],blklen,1),bgn);

 nrCodeBlockDesegmentLDPC

1-49

size(cbs)
[blk,err] = nrCodeBlockDesegmentLDPC(cbs,bgn,blklen);
blkSize = size(blk)
err

ans =

 5280 2

blkSize =

 10000 1

err =

 1×2 uint32 row vector

 0 0

Display Index Mapping of LDPC Code Block Desegmentation

Create a matrix representing two code block segments. Each element contains the linear
index of that element within the matrix. Concatenate the code block segments using
nrCodeBlockDesegmentLDPC with the specified base graph number and output block
length. To see how input maps onto the output, plot code block segment indices relative
to the corresponding indices in the concatenated input. In each code block segment, the
last 280 bits represent CRC and filler bits. These additional bits are removed from the
recovered data.

cbs = reshape([1:10560]',[],2);
bgn = 1;
blklen = 10000;
blk = nrCodeBlockDesegmentLDPC(cbs,bgn,blklen);
plot(blk);
xlabel('Code Block Bit Indices');
ylabel('Recovered Data Bit Indices');
title('Code Block Desegmentation Operation');

1 Functions — Alphabetical List

1-50

Input Arguments
cbs — Code block segments
real matrix

Code block segments, specified as a real matrix. A matrix with only one column
corresponds to one code block segment without CRC bits appended. If you specify a
matrix with more than one column, each column in the matrix corresponds to a separate
code block segment with type-24B CRC bits appended. In both cases, the code block
segments can contain filler bits.
Data Types: double | int8

 nrCodeBlockDesegmentLDPC

1-51

bgn — Base graph number
1 | 2

Base graph number, specified as 1 or 2.
Data Types: double

blklen — Output block length
nonnegative integer

Output block length, specified as a nonnegative integer. If blklen is 0, then both blk and
err are empty. The function uses blklen to validate the data dimensions of the input
cbs and to calculate the number of filler bits to remove.
Data Types: double

Output Arguments
blk — Concatenated data block
empty vector | real column vector

Concatenated data block, returned as an empty vector (when blklen is 0) or a real
column vector. The function removes any filler bits and type-24B CRC bits present in the
input cbs. The output blk inherits its data type from the input cbs.
Data Types: double | int8

err — CRC error
empty vector | vector of nonnegative integers

CRC error, returned as one of these values:

• Empty vector — The function returns this value when blklen is 0 or if cbs has only
one column (CRC decoding does not take place).

• Vector of nonnegative integers — If cbs has more than one column, err contains the
CRC error bits obtained from decoding the type-24B CRC bits in each code block
segment. The length of err is equal to the number of code block segments (number of
columns in the input cbs).

Data Types: uint32

1 Functions — Alphabetical List

1-52

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrCRCDecode | nrCodeBlockSegmentLDPC | nrLDPCDecode | nrRateRecoverLDPC

Introduced in R2018b

 nrCodeBlockDesegmentLDPC

1-53

nrDCIDecode
Decode downlink control information (DCI)

Syntax
dcibits = nrDCIDecode(softbits,K,L)
[dcibits,mask] = nrDCIDecode(softbits,K,L)

Description
dcibits = nrDCIDecode(softbits,K,L) decodes the input softbits and returns
the decoded DCI bits of length K. The function implements the inverse of the features
specified in TS 38.212 Sections 7.3.4, 7.3.3, and 7.3.2 [1], such as rate recovery, polar
decoding, and cyclic redundancy check (CRC) decoding. L specifies the list length used
for polar decoding.

[dcibits,mask] = nrDCIDecode(softbits,K,L) also looks for a cyclic redundancy
check (CRC) error in the DCI decoding. If mask is not equal to 0, either an error has
occurred or the input CRC has been masked. When there are no CRC errors, mask is the
actual value used for masking the CRC bits.

Examples

DCI Decoding of Sample Codeword

Perform DCI encoding of a random sequence of binary values of length 32. Set the radio
network temporary identifier (RNTI) to 100. The RNTI masks the CRC parity bits. Set the
length of the rate-matched DCI codeword to 240 bits.

K = 32;
rnti = 100;
E = 240;
dcibits = randi([0 1],K,1);
dcicw = nrDCIEncode(dcibits,rnti,E);

1 Functions — Alphabetical List

1-54

Perform DCI decoding of the soft bits representing the DCI codeword dcicw. Set the
length of the polar decoding list to 8.

L = 8;
[recBits,mask] = nrDCIDecode(1-2*dcicw,K,L);

Verify that the transmitted and received message bits are identical. The recovered mask
value is the RNTI value used for CRC masking.

isequal(recBits,dciBits)
mask

ans =

 logical

 1

mask =

 uint32

 100

Input Arguments
softbits — Coded block of soft bits
column vector of real numbers

Coded block of soft bits, specified as a column vector of real numbers.
Data Types: double | single

K — Length of decoded output in bits
integer

Length of decoded output in bits, specified as an integer from 12 to 140.
Data Types: double

L — Length of polar decoding list
power of two

Length of polar decoding list, specified as a power of two.

 nrDCIDecode

1-55

Data Types: double

Output Arguments
dcibits — Decoded DCI message bits
K-by-1 column vector of binary values

Decoded DCI message bits, returned as a K-by-1 column vector of binary values. The
message bits were transmitted on a single physical downlink control channel (PDCCH).
Data Types: int8

mask — Result of CRC decoding
nonnegative integer

Result of CRC decoding, returned as a nonnegative integer less than 216–1. If mask is not
equal to 0, either an error has occurred or the CRC has been masked. When there are no
errors, mask is the actual value used for masking the CRC bits.
Data Types: uint32

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrDCIEncode | nrPDCCH | nrPDCCHDecode

1 Functions — Alphabetical List

1-56

Introduced in R2018b

 nrDCIDecode

1-57

nrDCIEncode
Encode downlink control information (DCI)

Syntax
dcicw = nrDCIEncode(dcibits,rnti,E)

Description
dcicw = nrDCIEncode(dcibits,rnti,E) encodes the input DCI bits and returns the
rate-matched DCI codeword of length E. The function implements the features described
in TS 38.212 Section 7.3.2, 7.3.3, and 7.3.4 [1], such as cyclic redundancy check (CRC)
attachment, polar encoding, and rate matching. The CRC parity bits are masked with
rnti, the radio network temporary identifier (RNTI) of the user equipment.

Examples

Encode DCI Message Bits

Perform DCI encoding of a random sequence, and return the rate-matched DCI codeword.

Create a random sequence of binary values of length 32. Set RNTI to 100 and the length
of the rate-matched output to 240 bits.

dcibits = randi([0 1],32,1)
rnti = 100;
E = 240;
dcicw = nrDCIEncode(dcibits,rnti,E);

Input Arguments
dcibits — DCI message bits
column vector of binary values

1 Functions — Alphabetical List

1-58

DCI message bits, specified as a column vector of binary values. dcibits is the input to
the DCI processing to be transmitted on a single physical downlink control channel
(PDCCH).
Data Types: double | int8

rnti — Radio network temporary identifier
integer

Radio network temporary identifier of user equipment, specified as an integer from 0 to
65535.
Data Types: double

E — Length of rate-matched DCI codeword in bits
positive integer

Length of rate-matched DCI codeword in bits, specified as a positive integer. E must be in
the range K + 24 < E ≤ 8192, where K is the length of dcibits.
Data Types: double

Output Arguments
dcicw — Rate-matched DCI codeword
E-by-1 column vector of binary values

Rate-matched DCI codeword, returned as an E-by-1 column vector of binary values.
dcicw inherits its data type from the input dcibits.
Data Types: double | int8

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

 nrDCIEncode

1-59

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrDCIDecode | nrPDCCH | nrPDCCHDecode

Introduced in R2018b

1 Functions — Alphabetical List

1-60

nrPBCH
Generate PBCH modulation symbols

Syntax
sym = nrPBCH(cw,ncellid,v)
sym = nrPBCH(cw,ncellid,v,'OutputDataType',datatype)

Description
sym = nrPBCH(cw,ncellid,v) returns the physical broadcast channel (PBCH)
modulation symbols for the physical layer cell identity number ncellid. The function
implements TS 38.211 Section 7.3.3 [1]. The input cw is the BCH codeword, as described
in TS 38.212 Section 7.1.5 [2]. The input v specifies the scrambling sequence phase.

sym = nrPBCH(cw,ncellid,v,'OutputDataType',datatype) specifies the data
type of the PBCH symbol.

Examples

Generate Physical Broadcast Channel Symbols

Generate the sequence of 432 PBCH quadrature phase shift keying (QPSK) modulation
symbols. Consider the first Synchronization Signal / Physical Broadcast Channel (SS/
PBCH) block in a burst. Assume that the number of SS/PBCH blocks per half-frame is 4.
To represent the encoded BCH bits, generate a random sequence of binary values. The
length of the random sequence corresponds to the PBCH bit capacity as specified in TS
38.212 Section 7.1.5.

ncellid = 17;
ssbindex = 0;
v = mod(ssbindex,4);
E = 864;
cw = randi([0 1],E,1);

 nrPBCH

1-61

sym = nrPBCH(cw,ncellid,v);

Input Arguments
cw — BCH codeword
column vector of binary values

BCH codeword, specified as a column vector of binary values. The size of the vector is E =
864, as specified in TS 38.212 Section 7.1.5.
Data Types: double | int8 | logical

ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

v — Scrambling sequence phase
integer from 0 to 7

Scrambling sequence phase, specified as an integer from 0 to 7. v is derived in a
synchronization signal (SS) burst configuration, from the least significant bits (LSBs) of
the SS/PBCH block index.

• If the number of SS/PBCH blocks per half-frame is 4, then v is the two LSBs of the SS/
PBCH block index (0 to 3).

• If the number of SS/PBCH blocks per half-frame is 8 or 64, then v is the three LSBs of
the SS/PBCH block index (0 to 7).

Data Types: double

datatype — Data type of output symbols
'double' (default) | 'single'

Data type of output symbols, specified as 'double' or 'single'.
Data Types: char | string

1 Functions — Alphabetical List

1-62

Output Arguments
sym — PBCH modulation symbols
complex column vector

PBCH modulation symbols, returned as a complex column vector.
Data Types: single | double

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

[2] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPBCHDMRS | nrPBCHDMRSIndices | nrPBCHDecode | nrPBCHIndices | nrPBCHPRBS
| nrPRBS | nrPSS | nrSSS

Introduced in R2018b

 nrPBCH

1-63

nrPBCHIndices
Get PBCH resource element indices

Syntax
[ind,info] = nrPBCHIndices(ncellid)
[ind,info] = nrPBCHIndices(ncellid,Name,Value)

Description
[ind,info] = nrPBCHIndices(ncellid) returns the resource element indices ind
for the physical broadcast channel (PBCH) and related index information info. The
function implements TS 38.211 Section 7.4.3.1 [1]. The corresponding physical layer cell
identity number is ncellid. The returned indices are one-based using linear indexing
form. This indexing form can directly index the elements of a 240-by-4 matrix
corresponding to the Synchronization Signal / Physical Broadcast Channel (SS/PBCH)
block. The order of the indices indicates how the PBCH modulation symbols are mapped.

[ind,info] = nrPBCHIndices(ncellid,Name,Value) specifies additional index
formatting options by using one or more name-value pair arguments. Unspecified options
take default values.

Examples

Get PBCH Resource Element Indices

Generate the 432 resource element indices associated with the PBCH symbols within a
single SS/PBCH block for a given cell identity.

ncellid = 17;
indices = nrPBCHIndices(ncellid);

indices =

1 Functions — Alphabetical List

1-64

 432×1 uint32 column vector

 241
 243
 244
 245
 247
 248
 ...

Input Arguments
ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IndexStyle','subscript','IndexBase','0based' specifies nondefault
resource element index formatting properties.

IndexStyle — Resource element indexing form
'index' (default) | 'subscript'

Resource element indexing form, specified as the comma-separated pair consisting of
'IndexStyle' and one of these values:

• 'index' — The indices are in linear index form.
• 'subscript' — The indices are in [subcarrier, symbol, antenna] subscript row form.

Data Types: char | string

IndexBase — Resource element indexing base
'1based' (default) | '0based'

 nrPBCHIndices

1-65

Resource element indexing base, specified as the comma-separated pair consisting of
'IndexBase' and one of these values:

• '1based' — The index counting starts from one.
• '0based' — The index counting starts from zero.

Data Types: char | string

Output Arguments
ind — PBCH resource element indices
column vector | M-by-3 matrix

PBCH resource element indices, returned as one of the following.

• column vector — When 'IndexStyle' is 'index'.
• M-by-3 matrix — When 'IndexStyle' is 'subscript'. The matrix rows correspond

to the [subcarrier, symbol, antenna] subscripts based on the number of subcarriers
and OFDM symbols in a SS/PBCH block, and the number of antennas, respectively.

Depending on 'IndexBase', the indices are either one-based or zero-based.
Data Types: uint32

info — Characteristic information about PBCH indices
structure

Characteristic information about PBCH indices, returned as a structure with the following
fields.

Parameter Field Value Description
G 864 Number of coded and rate

matched PBCH data bits.
Gd 432 Number of coded and rate

matched PBCH data symbols.
Gd is equal to the number of
rows in the PBCH indices.

1 Functions — Alphabetical List

1-66

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPBCH | nrPBCHDMRSIndices | nrPSSIndices | nrSSSIndices

Introduced in R2018b

 nrPBCHIndices

1-67

nrPBCHDecode
Decode PBCH modulation symbols

Syntax
cw = nrPBCHDecode(sym,ncellid,v)
cw = nrPBCHDecode(sym,ncellid,v,nVar)

Description
cw = nrPBCHDecode(sym,ncellid,v) returns a vector of soft bits cw resulting from
performing the inverse of the physical broadcast channel (PBCH) processing defined in
TS 38.211 Section 7.3.3 [1]. sym specifies the received PBCH symbols, ncellid is the
physical layer cell identity number, and v specifies the scrambling sequence phase.

cw = nrPBCHDecode(sym,ncellid,v,nVar) specifies the noise variance scaling
factor of the soft bits in the PBCH demodulation.

Examples

Demodulate Physical Broadcast Channel Symbols

Generate the sequence of 432 PBCH quadrature phase shift keying (QPSK) modulation
symbols. Consider the first Synchronization Signal / Physical Broadcast Channel (SS/
PBCH) block in a burst. Assume that the number of SS/PBCH blocks per half-frame is 4.
To represent the encoded BCH bits, generate a random sequence of binary values. The
length of the random sequence corresponds to the PBCH bit capacity as specified in TS
38.212 Section 7.1.5.

ncellid = 17;
ssbindex = 0;
v = mod(ssbindex,4);
E = 864;
cw = randi([0 1],E,1);

1 Functions — Alphabetical List

1-68

sym = nrPBCH(cw,ncellid,v);

Create bit estimates by demodulating the PBCH symbols. Compare the result with the
original input by casting the bit estimates to logical values.

rxcw = nrPBCHDecode(sym,ncellid,v);
isequal(cw,rxcw<0)

Input Arguments
sym — Received PBCH modulation symbols
complex column vector

Received PBCH modulation symbols, specified as a complex column vector.
Data Types: single | double
Complex Number Support: Yes

ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

v — Scrambling sequence phase
integer from 0 to 7

Scrambling sequence phase, specified as an integer from 0 to 7. v is derived in a
synchronization signal (SS) burst configuration, from the least significant bits (LSBs) of
the SS/PBCH block index.

• If the number of SS/PBCH blocks per half-frame is 4, then v is the two LSBs of the SS/
PBCH block index (0 to 3).

• If the number of SS/PBCH blocks per half-frame is 8 or 64, then v is the three LSBs of
the SS/PBCH block index (0 to 7).

Data Types: double

nVar — Noise variance
1e-10 (default) | nonnegative numeric scalar

 nrPBCHDecode

1-69

Noise variance, specified as a nonnegative numeric scalar. The soft bits are scaled with
the variance of additive white Gaussian noise (AWGN). The default value corresponds to
an SNR of 100 dB, assuming unit signal power.

Note The default value assumes the decoder and coder are connected back-to-back
where the noise variance is zero. To avoid +/-Inf values in the output, the function uses
1e-10 as the default value for noise variance. To get appropriate results when the signal
is transmitted through a noisy channel, adjust the noise variance accordingly.

Data Types: double

Output Arguments
cw — Approximate LLR soft bits
column vector of binary values

Approximate log likelihood ratio (LLR) soft bits, returned as a column vector of binary
values. The length of cw is twice the length of the input sym.
Data Types: double | single

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

[2] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-70

See Also
Functions
nrPBCH | nrPBCHDMRS | nrPBCHDMRSIndices | nrPBCHIndices | nrPBCHPRBS |
nrPRBS | nrPSS | nrSSS

Introduced in R2018b

 nrPBCHDecode

1-71

nrPBCHPRBS
Generate PBCH pseudorandom scrambling sequence

Syntax
[seq,cinit] = nrPBCHPRBS(ncellid,v,n)
[seq,cinit] = nrPBCHPRBS(ncellid,v,n,Name,Value)

Description
[seq,cinit] = nrPBCHPRBS(ncellid,v,n) returns the first n elements of the
physical broadcast channel (PBCH) scrambling sequence. The pseudorandom binary
sequence (PRBS) generator is initialized with the physical layer cell identity number
ncellid and scrambling sequence phase v. The function implements TS 38.211 Section
7.3.3.1 [1]. The function also returns the initialization value cinit for the PRBS
generator.

[seq,cinit] = nrPBCHPRBS(ncellid,v,n,Name,Value) specifies additional output
formatting options by using one or more name-value pair arguments. Unspecified options
take default values.

Examples

Generate PBCH Scrambling Sequence

Generate the first 864 outputs of the PBCH scrambling sequence initialized with the
specified physical layer cell identity number. The specified length of 864 corresponds to
the PBCH bit capacity as specified in TS 38.212 Section 7.1.5. Consider the 43rd
Synchronization Signal / Physical Broadcast Channel (SS/PBCH) block in a burst. Assume
that the number of SS/PBCH blocks per half-frame is 64.

ncellid = 17;
ssbindex = 42;
v = mod(ssbindex,8); % assuming L_max = 64

1 Functions — Alphabetical List

1-72

E = 864;

seq = nrPBCHPRBS(ncellid,v,E);

Input Arguments
ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

v — Scrambling sequence phase
integer from 0 to 7

Scrambling sequence phase, specified as an integer from 0 to 7. v is derived in a
synchronization signal (SS) burst configuration, from the least significant bits (LSBs) of
the SS/PBCH block index.

• If the number of SS/PBCH blocks per half-frame is 4, then v is the two LSBs of the SS/
PBCH block index (0 to 3).

• If the number of SS/PBCH blocks per half-frame is 8 or 64, then v is the three LSBs of
the SS/PBCH block index (0 to 7).

Data Types: double

n — Number of elements in returned sequence
nonnegative integer

Number of elements in the returned sequence, specified as a nonnegative integer.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MappingType','signed' specifies nondefault output sequence formatting.

 nrPBCHPRBS

1-73

MappingType — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as the comma-separated pair consisting of
'MappingType' and one of these values:

• 'binary' — This value maps true to 1 and false to 0. The data type of the output
sequence is logical.

• 'signed' — This value maps true to –1 and false to 1. The data type of the output
sequence is double. To specify single data type, use the 'OutputDataType' name-
value pair.

Data Types: char | string

OutputDataType — Data type of output sequence
'double' (default) | 'single'

Data type of output sequence, specified as the comma-separated pair consisting of
'OutputDataType' and 'double' or 'single'. This name-value pair applies only
when 'MappingType' is set to 'signed'.
Data Types: char | string

Output Arguments
seq — PBCH pseudorandom scrambling sequence
logical column vector | numeric column vector

PBCH pseudorandom scrambling sequence, returned as a logical or numeric column
vector. The output seq contains the first n elements of the PBCH scrambling sequence. If
you set 'MappingType' to 'signed', the data type of seq is either double or single.
Otherwise, the data type of seq is logical.
Data Types: double | single | logical

cinit — Initialization value for PRBS generator
nonnegative integer from 0 to 1007

Initialization value for PRBS generator, returned as a nonnegative integer from 0 to 1007.
cinit is the same value as ncellid.
Data Types: double

1 Functions — Alphabetical List

1-74

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPBCH | nrPBCHDecode | nrPBCHIndices | nrPRBS

Introduced in R2018b

 nrPBCHPRBS

1-75

nrPDSCH
Generate PDSCH modulation symbols

Syntax
sym = nrPDSCH(cws,mod,nlayers,nid,rnti)
sym = nrPDSCH(___ ,'OutputDataType',datatype)

Description
sym = nrPDSCH(cws,mod,nlayers,nid,rnti) returns physical downlink shared
channel (PDSCH) modulation symbols, as defined in TS 38.211 Sections 7.3.1.1–3 [1]. The
process consists of scrambling with the scrambling identity nid, performing symbol
modulation with modulation scheme mod, and layer mapping. cws represents one or two
downlink shared channel (DL-SCH) codewords, as described in TS 38.212 Section 7.2.6.
nlayers specifies the number of transmission layers. rnti is the radio network
temporary identifier (RNTI) of the user equipment (UE).

sym = nrPDSCH(___ ,'OutputDataType',datatype) specifies the PDSCH symbol
data type in addition to the input arguments in the previous syntax.

Examples

Generate PDSCH Symbols for Single Codeword

Specify a random sequence of binary values corresponding to a codeword of 8000 bits
using 256-QAM modulation. Generate PDSCH modulation symbols for the specified
physical layer cell identity number, RNTI, and number of transmission layers.

modulation = '256QAM';
nlayers = 4;
ncellid = 42;
rnti = 6143;

1 Functions — Alphabetical List

1-76

data = randi([0 1],8000,1);
sym = nrPDSCH(data,modulation,nlayers,ncellid,rnti)

sym = 250×4 complex

 -0.2301 + 0.5369i -0.3835 + 0.9971i 0.3835 + 1.1504i -0.2301 + 0.9971i
 0.8437 - 0.0767i -0.9971 + 0.6903i -0.6903 - 0.6903i 0.6903 - 0.6903i
 0.2301 - 1.1504i -0.9971 + 0.0767i 0.6903 - 1.1504i 1.1504 + 0.6903i
 -0.3835 - 1.1504i -0.0767 - 0.0767i -0.3835 + 0.3835i -0.3835 - 0.3835i
 0.9971 + 0.5369i -0.3835 - 0.5369i 0.3835 - 0.6903i -0.3835 - 0.8437i
 -0.0767 + 1.1504i 0.6903 - 0.8437i -0.2301 + 0.2301i 0.8437 - 0.0767i
 -0.3835 - 1.1504i -0.6903 - 0.9971i 0.9971 - 0.3835i -0.9971 + 0.0767i
 -0.0767 + 0.6903i -0.0767 + 0.8437i 1.1504 + 0.0767i 0.6903 + 1.1504i
 -0.5369 - 0.9971i -0.8437 + 0.0767i 0.8437 - 0.3835i -0.9971 - 1.1504i
 0.2301 - 0.6903i -0.6903 - 0.5369i -0.6903 + 1.1504i 0.8437 - 0.2301i
 ⋮

Generate PDSCH Symbols for Codewords with Different Modulation Scheme

Specify two random sequences of binary values. The first sequence corresponds to a
codeword of 6000 bits using 64-QAM modulation. The second sequence corresponds to a
codeword of 8000 bits using 256-QAM modulation. Generate PDSCH modulation symbols
for the specified physical layer cell identity number and RNTI using a total of 8
transmission layers.

modulation = {'64QAM' '256QAM'};
nlayers = 8;
ncellid = 1;
rnti = 6143;
data = {randi([0 1],6000,1) randi([0 1],8000,1)};
sym = nrPDSCH(data,modulation,nlayers,ncellid,rnti)

sym = 250×8 complex

 -0.4629 - 0.7715i 0.4629 - 0.4629i 0.4629 + 0.1543i 0.7715 - 1.0801i 0.3835 - 0.9971i -0.5369 + 0.6903i 0.6903 - 0.6903i -0.5369 + 0.0767i
 0.1543 + 0.4629i -1.0801 + 1.0801i -0.7715 + 0.7715i -0.1543 + 0.7715i -0.2301 + 0.9971i -1.1504 + 1.1504i -0.0767 + 1.1504i -0.6903 + 0.9971i
 -0.1543 + 0.1543i 0.7715 - 1.0801i -0.4629 + 0.7715i 0.1543 + 1.0801i 0.0767 - 0.8437i 0.0767 - 0.9971i 0.3835 + 0.3835i 1.1504 - 0.9971i
 -0.7715 - 0.4629i -0.1543 + 0.7715i -0.7715 - 0.7715i -0.4629 - 0.1543i -0.6903 + 0.5369i -0.8437 - 0.5369i -0.5369 + 0.0767i -0.0767 - 1.1504i
 1.0801 - 1.0801i -1.0801 + 0.7715i 0.1543 - 0.4629i 0.4629 - 0.4629i -1.1504 + 0.2301i -0.9971 + 0.9971i -1.1504 + 0.8437i 0.2301 - 0.2301i
 0.4629 + 0.4629i 0.1543 + 0.1543i -0.1543 + 0.1543i 0.1543 - 0.4629i 0.6903 + 0.2301i -0.6903 + 0.6903i 0.3835 + 0.5369i 0.3835 + 0.0767i
 -1.0801 + 0.7715i 0.4629 - 1.0801i 0.4629 + 1.0801i -0.4629 + 0.4629i -0.6903 + 0.8437i -0.3835 - 0.2301i 0.5369 + 0.8437i 0.9971 - 0.9971i

 nrPDSCH

1-77

 -1.0801 + 0.7715i -0.1543 - 0.1543i 0.7715 + 1.0801i -0.4629 - 0.1543i 0.8437 + 0.5369i -0.2301 + 0.0767i -0.6903 - 0.0767i -0.0767 - 0.6903i
 -0.4629 - 1.0801i -0.7715 - 0.1543i 0.1543 - 1.0801i -0.1543 + 0.1543i 0.2301 - 0.3835i 1.1504 + 0.2301i -1.1504 - 1.1504i -1.1504 - 1.1504i
 0.7715 + 1.0801i 1.0801 - 0.4629i 1.0801 + 1.0801i -0.1543 - 1.0801i -0.0767 + 0.0767i 0.3835 + 0.9971i 0.0767 - 0.6903i 0.5369 - 0.8437i
 ⋮

Input Arguments
cws — DL-SCH codewords
cell array of binary column vectors | binary column vector

DL-SCH codewords, specified as one of these values:

• Cell array of one or two binary column vectors — Use this value to specify one or two
DL-SCH codewords, as described in TS 38.212 Section 7.2.6.

• Binary column vector — Use this value to specify one DL-SCH codeword.

Data Types: double | single | cell

mod — Modulation scheme
'QPSK' | '16QAM' | '64QAM' | '256QAM' | string array | cell array of character vectors

Modulation scheme, specified as 'QPSK', '16QAM', '64QAM', or '256QAM', a string
array, or a cell array of character vectors. This modulation scheme specifies the
modulation type of the codewords and the number of bits used per modulation symbol. If
cws contains two codewords, the modulation scheme applies to both codewords.
Alternatively, you can specify different modulation schemes for each codeword by using a
string array or a cell array of character vectors.

Modulation Scheme Number of Bits Per Symbol
'QPSK' 2
'16QAM' 4
'64QAM' 6
'256QAM' 8

Example: To specify different modulation schemes for two codewords, you can use any of
these formats: {'QPSK','16QAM'} or ["QPSK","16QAM"].
Data Types: char | string | cell

1 Functions — Alphabetical List

1-78

nlayers — Number of transmission layers
integer from 1 to 8

Number of transmission layers, specified as an integer from 1 to 8. For one codeword, use
an integer between 1 to 4. For two codewords, use an integer between 5 to 8.
Data Types: double

nid — Scrambling identity
integer

Scrambling identity, specified as an integer from 0 to 1023. Specify with nid the physical
layer cell identity number (0 to 1007) or the higher layer parameter
dataScramblingIdentityPDSCH (0 to 1023). For more information on these values, see
TS 38.331 Section 6.3.2.
Data Types: double

rnti — Radio network temporary identifier
integer

Radio network temporary identifier of user equipment, specified as an integer from 0 to
65535.
Data Types: double

datatype — Data type of output symbols
'double' (default) | 'single'

Data type of output symbols, specified as 'double' or 'single'.
Data Types: char | string

Output Arguments
sym — PDSCH modulation symbols
complex matrix

PDSCH modulation symbols, returned as a complex matrix.
Data Types: single | double

 nrPDSCH

1-79

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

[2] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrLayerMap | nrPDSCHDecode | nrPDSCHPRBS | nrSymbolModulate

Introduced in R2018b

1 Functions — Alphabetical List

1-80

nrPDSCHDecode
Decode PDSCH modulation symbols

Syntax
[cws,symbols] = nrPDSCHDecode(sym,mod,nid,rnti)
[cws,symbols] = nrPDSCHDecode(___ ,nVar)

Description
[cws,symbols] = nrPDSCHDecode(sym,mod,nid,rnti) returns soft bits cws and
constellation symbols symbols resulting from the inverse operation of the physical
downlink shared channel (PDSCH) processing specified in TS 38.211 Sections 7.3.11–3
[1]. The decoding consists of layer demapping, demodulation of sym with modulation
scheme mod, and descrambling with the scrambling identity nid. The radio network
temporary identifier (RNTI) of the user equipment is specified by rnti.

[cws,symbols] = nrPDSCHDecode(___ ,nVar) specifies the noise variance scaling
factor of the soft bits in the PDSCH demodulation in addition to the input arguments in
the previous syntax.

Examples

Decode PDSCH Modulation Symbols

Generate and decode PDSCH modulation symbols.

Specify a random sequence of binary values corresponding to a codeword of 8000 bits
using 256-QAM modulation. Generate PDSCH modulation symbols for the specified
physical layer cell identity number, RNTI, and number of transmission layers.

modulation = '256QAM';
nlayers = 4;
ncellid = 42;

 nrPDSCHDecode

1-81

rnti = 6143;
data = randi([0 1],8000,1);
txsym = nrPDSCH(data,modulation,nlayers,ncellid,rnti);

Add an additive white Gaussian noise (AWGN) to the PDSCH symbols. Then demodulate
to produce soft bit estimates.

SNR = 30; % SNR in dB
rxsym = awgn(txsym,SNR);
rxbits = nrPDSCHDecode(rxsym,modulation,ncellid,rnti);

Input Arguments
sym — Received PDSCH modulation symbols
complex matrix

Received PDSCH modulation symbols, specified as a complex matrix of size NRE-by-NLayers.
NRE is the number of resource elements in a layer, and NLayers is the number of layers.
NLayers determines the number of codewords in cws.

• If NLayers is from 1 to 4, the function returns one codeword in cws.
• If NLayers is from 5 to 8, the function returns two codewords in cws.

Data Types: single | double
Complex Number Support: Yes

mod — Modulation scheme
'QPSK' | '16QAM' | '64QAM' | '256QAM' | string array | cell array of character vectors

Modulation scheme, specified as 'QPSK', '16QAM', '64QAM', or '256QAM', a string
array, or a cell array of character vectors. This modulation scheme specifies the
modulation type of the codewords and the number of bits used per modulation symbol. If
cws contains two codewords, the modulation scheme applies to both codewords.
Alternatively, you can specify different modulation schemes for each codeword by using a
string array or a cell array of character vectors.

Modulation Scheme Number of Bits Per Symbol
'QPSK' 2

1 Functions — Alphabetical List

1-82

Modulation Scheme Number of Bits Per Symbol
'16QAM' 4
'64QAM' 6
'256QAM' 8

Example: To specify different modulation schemes for two codewords, you can use any of
these formats: {'QPSK','16QAM'} or ["QPSK","16QAM"].
Data Types: char | string | cell

nid — Scrambling identity
integer

Scrambling identity, specified as an integer from 0 to 1023. Specify with nid the physical
layer cell identity number (0 to 1007) or the higher layer parameter
dataScramblingIdentityPDSCH (0 to 1023). For more information on these values, see
TS 38.331 Section 6.3.2.
Data Types: double

rnti — Radio network temporary identifier
integer

Radio network temporary identifier of user equipment, specified as an integer from 0 to
65535.
Data Types: double

nVar — Noise variance
1e-10 (default) | nonnegative numeric scalar

Noise variance, specified as a nonnegative numeric scalar. The soft bits are scaled with
the variance of additive white Gaussian noise (AWGN). The default value corresponds to
an SNR of 100 dB, assuming unit signal power.

Note The default value assumes the decoder and coder are connected back-to-back
where the noise variance is zero. To avoid +/-Inf values in the output, the function uses
1e-10 as the default value for noise variance. To get appropriate results when the signal
is transmitted through a noisy channel, adjust the noise variance accordingly.

Data Types: double

 nrPDSCHDecode

1-83

Output Arguments
cws — Approximate LLR soft bits
cell array of real column vectors

Approximate log likelihood ratio (LLR) soft bits, returned as a cell array of one or two real
column vectors. The output cws inherits the data type of sym. The number of column
vectors depends on the number layers in sym. The sign of the output represents the hard
bits.
Data Types: double | single | cell

symbols — Symbol constellation for each codeword
cell array of one or two column vectors of complex numbers

Symbol constellation for each codeword in cws, returned as a cell array of one or two
column vectors of complex numbers. symbols inherits the data type of sym.
Data Types: double | single | cell

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrLayerDemap | nrPDSCH | nrPDSCHPRBS | nrSymbolDemodulate

1 Functions — Alphabetical List

1-84

Introduced in R2018b

 nrPDSCHDecode

1-85

nrPDSCHPRBS
Generate PDSCH pseudorandom scrambling sequence

Syntax
[seq,cinit] = nrPDSCHPRBS(nid,rnti,q,n)
[seq,cinit] = nrPDSCHPRBS(nid,rnti,q,n,Name,Value)

Description
[seq,cinit] = nrPDSCHPRBS(nid,rnti,q,n) returns the first n elements of the
physical downlink shared channel (PDSCH) scrambling sequence. The function also
returns the initialization value cinit of the pseudorandom binary sequence (PRBS)
generator. The initialization value depends on the scrambling identity number nid, the
radio network temporary identifier (RNTI) of the user equipment rnti, and the codeword
number q. The function implements TS 38.211 Section 7.3.1.1 [1].

[seq,cinit] = nrPDSCHPRBS(nid,rnti,q,n,Name,Value) specifies additional
output formatting options by using one or more name-value pair arguments. Unspecified
options take default values.

Examples

Generate PDSCH Scrambling Sequence

Generate the first 300 outputs of the PDSCH scrambling sequence when initialized with
the specified physical layer cell identity number, RNTI, and codeword number.

 ncellid = 17;
 rnti = 120;
 q = 0;
 n = 300;
 seq = nrPDSCHPRBS(ncellid,rnti,q,n)

1 Functions — Alphabetical List

1-86

seq = 300x1 logical array

 0
 1
 1
 0
 1
 1
 0
 1
 0
 0
 ⋮

Input Arguments
nid — Scrambling identity
integer

Scrambling identity, specified as an integer from 0 to 1023. Specify with nid the physical
layer cell identity number (0 to 1007) or the higher layer parameter
dataScramblingIdentityPDSCH (0 to 1023). For more information on these values, see
TS 38.331 Section 6.3.2.
Data Types: double

rnti — Radio network temporary identifier
integer

Radio network temporary identifier of user equipment, specified as an integer from 0 to
65535.
Data Types: double

q — Codeword number
0 | 1

Codeword number, specified as 0 or 1.
Data Types: double

 nrPDSCHPRBS

1-87

n — Number of elements in returned sequence
nonnegative integer

Number of elements in returned sequence, specified as a nonnegative integer.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MappingType','signed' specifies nondefault sequence formatting.

MappingType — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as the comma-separated pair consisting of
'MappingType' and one of these values:

• 'binary' — This value maps true to 1 and false to 0. The data type of the output
sequence is logical.

• 'signed' — This value maps true to –1 and false to 1. The data type of the output
sequence is double. To specify single data type, use the 'OutputDataType' name-
value pair.

Data Types: char | string

OutputDataType — Data type of output sequence
'double' (default) | 'single'

Data type of output sequence, specified as the comma-separated pair consisting of
'OutputDataType' and 'double' or 'single'. This name-value pair applies only
when 'MappingType' is set to 'signed'.
Data Types: char | string

1 Functions — Alphabetical List

1-88

Output Arguments
seq — PDSCH pseudorandom scrambling sequence
logical column vector | numeric column vector

PDSCH pseudorandom scrambling sequence, returned as a logical or numeric column
vector. seq contains the first n elements of the PDSCH scrambling sequence. If you set
'MappingType' to 'signed', the output data type is either double or single.
Otherwise, the output data type is logical.
Data Types: double | single | logical

cinit — Initialization value for PRBS generator
integer from 0 to 2147468287

Initialization value for PRBS generator, returned as an integer from 0 to 2147468287.
Data Types: double

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPDSCH | nrPDSCHDecode | nrPRBS

Introduced in R2018b

 nrPDSCHPRBS

1-89

nrPDCCH
Generate PDCCH modulation symbols

Syntax
sym = nrPDCCH(dcicw,nid,nrnti)
sym = nrPDCCH(___ ,'OutputDataType',datatype)

Description
sym = nrPDCCH(dcicw,nid,nrnti) returns the physical downlink control channel
(PDCCH) modulation symbols, as defined in TS 38.211 Section 7.3.2 [1]. dcicw is the
encoded downlink control information (DCI) codeword, as specified in TS 38.212 Section
7.3 [2]. The generation process consists of scrambling the input DCI codeword with
scrambling identity nid, and QPSK symbol modulation. nrnti specifies the user
equipment (UE).

sym = nrPDCCH(___ ,'OutputDataType',datatype) specifies the PDCCH symbol
data type in addition to the input arguments in the previous syntax.

Examples

Generate PDCCH Modulation Symbols Using DMRS Scrambling Identity

Specify a random sequence of binary values corresponding to a DCI codeword of 560 bits.
Generate modulation symbols by scrambling with the PDCCH demodulation reference
signal (DMRS) scrambling identity.

dcicw = randi([0 1],560,1);
nid = 2^11; % pdcch-DMRS-ScramblingID
nrnti = 123; % C-RNTI
sym = nrPDCCH(dcicw,nid,nrnti);

1 Functions — Alphabetical List

1-90

Generate PDCCH Modulation Symbols Using NcellID for Scrambling

Specify a random sequence of binary values corresponding to a DCI codeword of 560 bits.
Generate PDCCH modulation symbols by setting the scrambling identity to the physical
layer cell identity (NcellID).

dcicw = randi([0 1],560,1);
nid = 123; % NcellID (0 to 1007)
nrnti = 0;
sym = nrPDCCH(dcicw,nid,nrnti);

Input Arguments
dcicw — Encoded DCI codeword
column vector of binary values

Encoded DCI codeword, specified as a column vector of binary values.
Data Types: double | int8 | logical

nid — Scrambling identity
integer

Scrambling identity, specified as an integer from 0 to 65535. Specify with nid the
physical layer cell identity number (0 to 1007) or the higher layer parameter pdcch-
DMRS-ScramblingID (0 to 65535). For more information on these values, see TS 38.211
Section 7.3.2.3 and 7.4.1.3.
Data Types: double

nrnti — User equipment identifier
integer

User equipment identifier, specified as an integer from 0 to 65535.

• If nid is the PDCCH DMRS scrambling identity, nrnti is the cell radio network
temporary identifier (C-RNTI) in a user equipment specific search space.

• If nid is the physical layer cell identity, nrnti is 0.

For more information, TS 38.211 Section 7.3.2.3 and 7.4.1.3.
Data Types: double

 nrPDCCH

1-91

datatype — Data type of output symbols
'double' (default) | 'single'

Data type of output symbols, specified as 'double' or 'single'.
Data Types: char | string

Output Arguments
sym — PDCCH modulation symbols
complex column vector

PDCCH modulation symbols, returned as a complex column vector.
Data Types: single | double

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

[2] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrDCIDecode | nrDCIEncode | nrPDCCHDecode | nrPDCCHPRBS

1 Functions — Alphabetical List

1-92

Introduced in R2018b

 nrPDCCH

1-93

nrPDCCHDecode
Decode PDCCH modulation symbols

Syntax
dcicw = nrPDCCHDecode(sym,nid,nrnti)
dcicw = nrPDCCHDecode(sym,nid,nrnti,nVar)

Description
dcicw = nrPDCCHDecode(sym,nid,nrnti) returns the soft bits resulting from the
inverse operation of the physical downlink control channel (PDCCH) processing specified
in TS 38.211 Section 7.3.2 [1]. The decoding consists of the QPSK demodulation of sym,
and descrambling with the scrambling identity nid. The argument nrnti specifies the
user equipment (UE).

dcicw = nrPDCCHDecode(sym,nid,nrnti,nVar) specifies the noise variance scaling
factor of the soft bits in the PDCCH demodulation.

Examples

Decode PDCCH Modulation Symbols

Specify a random sequence of binary values corresponding to a DCI codeword of 560 bits.
Generate PDCCH modulation symbols by scrambling with the PDCCH demodulation
reference signal (DMRS) scrambling identity. Specify the user equipment by using the cell
radio network temporary identifier.

dcicw = randi([0 1],560,1);
nid = 2^11; % pdcch-DMRS-ScramblingID
nrnti = 123; % C-RNTI
sym = nrPDCCH(dcicw,nid,nrnti);

Demodulate and compare the soft bits with the input codeword.

1 Functions — Alphabetical List

1-94

nVar = 0;
rxdcicw = nrPDCCHDecode(sym,nid,nrnti,nVar);

isequal(dcicw,rxdcicw<0)

ans =

 logical

 1

Input Arguments
sym — Received PDCCH modulation symbols
complex column vector

Received PDCCH modulation symbols, specified as a complex column vector.
Data Types: single | double

nid — Scrambling identity
integer

Scrambling identity, specified as an integer from 0 to 65535. Specify with nid the
physical layer cell identity number (0 to 1007) or the higher layer parameter pdcch-
DMRS-ScramblingID (0 to 65535). For more information on these values, see TS 38.211
Section 7.3.2.3 and 7.4.1.3.
Data Types: double

nrnti — User equipment identifier
integer

User equipment identifier, specified as an integer from 0 to 65535.

• If nid is the PDCCH DMRS scrambling identity, nrnti is the cell radio network
temporary identifier (C-RNTI) in a user equipment specific search space.

• If nid is the physical layer cell identity, nrnti is 0.

For more information, TS 38.211 Section 7.3.2.3 and 7.4.1.3.
Data Types: double

 nrPDCCHDecode

1-95

nVar — Noise variance
1e-10 (default) | nonnegative numeric scalar

Noise variance, specified as a nonnegative numeric scalar. The soft bits are scaled with
the variance of additive white Gaussian noise (AWGN). The default value corresponds to
an SNR of 100 dB, assuming unit signal power.

Note The default value assumes the decoder and coder are connected back-to-back
where the noise variance is zero. To avoid +/-Inf values in the output, the function uses
1e-10 as the default value for noise variance. To get appropriate results when the signal
is transmitted through a noisy channel, adjust the noise variance accordingly.

Data Types: double

Output Arguments
dcicw — Approximate LLR soft bits
column vector of real numbers

Approximate log-likelihood ratio (LLR) soft bits, returned as a column vector of real
numbers. dcicw inherits the data type of sym.
Data Types: double | single

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-96

See Also
Functions
nrDCIDecode | nrDCIEncode | nrPDCCH | nrPDCCHPRBS

Introduced in R2018b

 nrPDCCHDecode

1-97

nrPDCCHPRBS
Generate PDCCH pseudorandom scrambling sequence

Syntax
[seq,cinit] = nrPDCCHPRBS(nid,nrnti,n)
[seq,cinit] = nrPDCCHPRBS(nid,nrnti,n,Name,Value)

Description
[seq,cinit] = nrPDCCHPRBS(nid,nrnti,n) returns the first n elements of the
physical downlink control channel (PDCCH) scrambling sequence. The function also
returns the initialization value cinit of the pseudorandom binary sequence (PRBS)
generator. The initialization value depends on the scrambling identity number nid and
the user equipment identifier nrnti. The function implements TS 38.211 Section 7.3.2.3
[1].

[seq,cinit] = nrPDCCHPRBS(nid,nrnti,n,Name,Value) specifies additional
output formatting options by using one or more name-value pair arguments. Unspecified
options take default values.

Examples

Generate PDCCH Scrambling Sequence Using DMRS Scrambling Identity

Generate the first 100 elements of the PDCCH scrambling sequence. The PDCCH
demodulation reference signal (DMRS) scrambling identity and the cell radio network
temporary identifier determine the initialization value.

n = 100;
nid = 10; % pdcch-DMRS-ScramblingID

1 Functions — Alphabetical List

1-98

nrnti = 20; % C-RNTI
seq = nrPDCCHPRBS(nid,nrnti,n);

Generate PDCCH Scrambling Sequence Using NcellID

Generate the first 120 elements of the PDCCH scrambling sequence initialized with the
physical layer cell identity number (NcellID).

n = 120;
nid = 123; % NcellID (0 to 1007)
nrnti = 0;
seq = nrPDCCHPRBS(nid,nrnti,n);

Input Arguments
nid — Scrambling identity
integer

Scrambling identity, specified as an integer from 0 to 65535. Specify with nid the
physical layer cell identity number (0 to 1007) or the higher layer parameter pdcch-
DMRS-ScramblingID (0 to 65535). For more information on these values, see TS 38.211
Section 7.3.2.3 and 7.4.1.3.
Data Types: double

nrnti — User equipment identifier
integer

User equipment identifier, specified as an integer from 0 to 65535.

• If nid is the PDCCH DMRS scrambling identity, nrnti is the cell radio network
temporary identifier (C-RNTI) in a user equipment specific search space.

• If nid is the physical layer cell identity, nrnti is 0.

For more information, TS 38.211 Section 7.3.2.3 and 7.4.1.3.
Data Types: double

n — Number of elements in returned sequence
nonnegative integer

 nrPDCCHPRBS

1-99

Number of elements in the returned sequence, specified as a nonnegative integer.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MappingType','signed' specifies nondefault output sequence formatting.

MappingType — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as the comma-separated pair consisting of
'MappingType' and one of these values:

• 'binary' — This value maps true to 1 and false to 0. The data type of the output
sequence is logical.

• 'signed' — This value maps true to –1 and false to 1. The data type of the output
sequence is double. To specify single data type, use the 'OutputDataType' name-
value pair.

Data Types: char | string

OutputDataType — Data type of output sequence
'double' (default) | 'single'

Data type of output sequence, specified as the comma-separated pair consisting of
'OutputDataType' and 'double' or 'single'. This name-value pair applies only
when 'MappingType' is set to 'signed'.
Data Types: char | string

Output Arguments
seq — PDCCH pseudorandom scrambling sequence
logical column vector | numeric column vector

1 Functions — Alphabetical List

1-100

PDCCH pseudorandom scrambling sequence, returned as a logical or numeric column
vector. seq contains the first n elements of the PDCCH scrambling sequence. If you set
'MappingType' to 'signed', the output data type is either double or single.
Otherwise, the output data type is logical.
Data Types: double | single | logical

cinit — Initialization value for PRBS generator
nonnegative integer

Initialization value for the PRBS generator, returned as a nonnegative integer.
Data Types: double

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPDCCH | nrPDCCHDecode | nrPRBS

Introduced in R2018b

 nrPDCCHPRBS

1-101

nrBCH
Broadcast channel (BCH) encoding

Syntax
cdblk = nrBCH(mib,sfn,hrf,lssb,idxoffset,ncellid)

Description
cdblk = nrBCH(mib,sfn,hrf,lssb,idxoffset,ncellid) encodes the master
information block (MIB) payload, mib, in accordance with TS 38.212, Section 7.1 [1]. The
function returns the encoded broadcast channel (BCH) transport block cdblk. The other
nrBCH input arguments are as follows.

• The system frame number sfn.
• The half frame bit hrf.
• The number of candidate synchronization signal / physical broadcast channel (SS/

PBCH) blocks in a half frame lssb.
• The subcarrier offset / SS block index idxoffset.
• The physical layer cell identity number ncellid.

Examples

Encode MIB Payload with Subcarrier Offset

Perform encoding on a random input MIB payload with subcarrier offset.

Specify the physical layer cell identity number, system frame number, and half frame bit.

ncellid = 321; % Physical layer cell identity number
sfn = 10; % System frame number, as a decimal
hrf = 1; % Half frame bit

1 Functions — Alphabetical List

1-102

Generate a random MIB payload, specify the number of candidate SS/PBCH blocks as
eight, and set the subcarrier offset to 18.
mib = randi([0 1],24,1,'int8'); % MIB payload
lssb = 8; % Number of candidate SS/PBCH blocks
idxoffset = 18; % Subcarrier offset in the range 0 to 23

Encode input MIB payload and return encoded BCH transport block.

cdblk = nrBCH(mib,sfn,hrf,lssb,idxoffset,ncellid);

Encode MIB with SS/PBCH Block Index

Perform encoding on a random input MIB payload with SS/PBCH block index.

Specify the physical layer cell identity number, system frame number, and half frame bit.

ncellid = 321; % Physical layer cell identity number
sfn = 10; % System frame number, as a decimal
hrf = 1; % Half frame bit

Generate a random MIB payload, specify the number of candidate SS/PBCH blocks as 64,
and set the SS/PBCH block index to 13.

mib = randi([0 1],24,1,'int8'); % MIB payload
lssb = 64; % Number of candidate SS/PBCH blocks
idxoffset = 13; % SS/PBCH in the range 0 to 63

Encode input MIB payload and return encoded BCH transport block.

cdblk = nrBCH(mib,sfn,hrf,lssb,idxoffset,ncellid);

Input Arguments
mib — MIB payload to be encoded
24-by-1 binary column vector

MIB payload to be encoded, specified as a 24-by-1 binary column vector.
Data Types: double | int8

sfn — System frame number
nonnegative integer

 nrBCH

1-103

System frame number, specified as a nonnegative integer.
Data Types: double

hrf — Half frame bit
0 | 1

Half frame bit, specified as either 0 or 1.
Data Types: double

lssb — Number of candidate SS/PBCH blocks
4 | 8 | 64

Number of candidate SS/PBCH blocks in a half frame, specified as 4, 8, or 64.
Data Types: double

idxoffset — SS/PBCH block index
nonnegative integer

Subcarrier offset / SS/PBCH block index, specified as a nonnegative integer.

• If lssb is 4 or 8, idxoffset specifies the subcarrier offset, which must be an integer
from 0 to 23.

• If lssb is 64, idxoffset specifies the SS/PBCH block index, which must be an
integer from 0 to 63.

Data Types: double

ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

Output Arguments
cdblk — Encoded BCH transport block
864-by-1 binary column vector

Encoded BCH transport block of 864 bits, returned as an 864-by-1 binary column vector.

1 Functions — Alphabetical List

1-104

Data Types: double | int8

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrBCHDecode | nrPBCH | nrPBCHDecode

Topics
“NR Synchronization Procedures”

Introduced in R2018b

 nrBCH

1-105

nrBCHDecode
Broadcast channel (BCH) decoding

Syntax
scrblk = nrBCHDecode(softbits,L)
[scrblk,errFlag] = nrBCHDecode(softbits,L)
[scrblk,errFlag,mib,lsbofsfn,hrf,msbidxoffset] = nrBCHDecode(
softbits,L,lssb,ncellid)

Description
scrblk = nrBCHDecode(softbits,L) decodes the log-likelihood ratios (LLRs)
softbits in accordance with TS 38.212, Section 7.1 [1]. The function returns the
decoded scrambled transport block scrblk. The input argument L is the list length used
for polar decoding.

[scrblk,errFlag] = nrBCHDecode(softbits,L) also returns an error flag,
errFlag, to indicate whether scrblk contains an error after decoding.

[scrblk,errFlag,mib,lsbofsfn,hrf,msbidxoffset] = nrBCHDecode(
softbits,L,lssb,ncellid) also returns the following.

• The unscrambled master information block (MIB) payload mib.
• The four least significant bits (LSBs) of the system frame number lsbofsfn.
• The half frame bit hrf.
• The decoded most significant bits (MSBs) msbidxoffset.

The other nrBCHDecode input arguments are the number of candidate synchronization
signal / physical broadcast channel (SS/PBCH) blocks lssb and the physical layer cell
identity number ncellid.

Examples

1 Functions — Alphabetical List

1-106

Decode Scrambled Transport Block

Return the scrambled transport block, unscrambled MIB payload, and other relevant
information.

Specify the physical layer cell identity number, system frame number, and half frame bit.

ncellid = 321; % Physical layer cell identity number
sfn = 10; % System frame number, as a decimal
hrf = 1; % Half frame bit

Generate a random MIB payload, specify the number of candidate SS/PBCH blocks as
eight, and set the subcarrier offset to 18.
mib = randi([0 1],24,1,'int8'); % MIB payload
lssb = 8; % Number of candidate SS/PBCH blocks
idxoffset = 18; % Subcarrier offset in the range 0 to 23

Encode input MIB payload and return the encoded BCH transport block.

cdblk = nrBCH(mib,sfn,hrf,lssb,idxoffset,ncellid);

Specify the LLRs in terms of the encoded BCH transport block.

softbits = double(1-2*cdblk); % LLRs to be decoded

Decode to recover the scrambled transport block and unscrambled MIB payload.

L = 8; % Polar decoding list length

[scrblk,errFlag,rxMIB,rxlsbofsfn,rxHRF,rxidxoffset] = …
nrBCHDecode(softbits,L,lssb,ncellid);

Input Arguments
softbits — LLRs to be decoded
864-by-1 real column vector

LLRs to be decoded, specified as an 864-by-1 real column vector.
Data Types: single | double

L — Polar decoding list length
power of 2

 nrBCHDecode

1-107

Polar decoding list length, specified as a power of 2.
Data Types: double

lssb — Number of candidate SS/PBCH blocks in a half frame
4 | 8 | 64

Number of candidate SS/PBCH blocks in a half frame, specified as 4, 8, or 64.
Data Types: double

ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

Output Arguments
scrblk — Decoded scrambled transport block
32-by-1 binary column vector

Decoded scrambled transport block, returned as a 32-by-1 binary column vector.
Data Types: int8

errFlag — Error flag
0 | 1

Error flag to indicate whether scrblk contains an error, returned as either 0 or 1. If
errFlag is returned as 1, then an error has occurred.
Data Types: uint32

mib — Decoded and unscrambled MIB payload
24-by-1 binary column vector

Decoded and unscrambled MIB payload, returned as a 24-by-1 binary column vector.
Data Types: logical

lsbofsfn — Four LSBs of the system frame number
4-by-1 column vector

1 Functions — Alphabetical List

1-108

Four LSBs of the system frame number, returned as a 4-by-1 column vector.
Data Types: logical

hrf — Half frame bit
0 | 1

Half frame bit, returned as either 0 or 1.
Data Types: logical

msbidxoffset — Decoded MSBs
scalar | 3-by-1 column vector

Decoded MSBs, returned as a scalar or 3-by-1 column vector.

• If lssb is 4 or 8, msbidxoffset is the decoded MSB of the subcarrier index,
returned as a scalar.

• If lssb is 64, the entries of msbidxoffset are the three decoded MSBs of the SSB
index, returned as a 3-by-1 column vector.

Data Types: logical

References
[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrBCH | nrPBCH | nrPBCHDecode

 nrBCHDecode

1-109

Topics
“NR Synchronization Procedures”

Introduced in R2018b

1 Functions — Alphabetical List

1-110

nrDLSCHInfo
Get downlink shared channel (DL-SCH) information

Syntax
info = nrDLSCHInfo(tbs,tcr)

Description
info = nrDLSCHInfo(tbs,tcr) returns a structure containing DL-SCH information
for an input transport block size tbs and target code rate tcr. The DL-SCH information
includes the cyclic redundancy check (CRC) attachment, code block segmentation (CBS),
and channel coding.

Examples

Get DL-SCH Information

Get DL-SCH information for an input transport block of size 8456 and target code rate
517/1024. The displayed DL-SCH information shows the following.

• The transport block has 312 <NULL> filler bits per code block.
• The number of bits per code block after CBS is 4576.
• The number of bits per code block after low-density parity-check (LDPC) coding is

13728.

For more details on all the fields in the nrDLSCHInfo output structure, see the output
argument info.

tbs = 8456;
tcr = 517/1024;
nrDLSCHInfo(tbs,tcr)

 nrDLSCHInfo

1-111

ans =

 struct with fields:

 CRC: '24A'
 L: 24
 BGN: 1
 C: 2
 Lcb: 24
 F: 312
 Zc: 208
 K: 4576
 N: 13728

Input Arguments
tbs — Transport block size
nonnegative integer

transport block size, specified as a nonnegative integer.
Data Types: double

tcr — Target code rate
real number

Target code rate, specified as a real number in the range 0 < tcr < 1.
Data Types: double

Output Arguments
info — DL-SCH information
structure

DL-SCH information, returned as a structure containing the following fields.

Parameter
Field

Values Description

CRC '16', '24A' CRC polynomial selection

1 Functions — Alphabetical List

1-112

Parameter
Field

Values Description

L 0, 16, 24 Number of CRC bits
BGN 1, 2 LDPC base graph selection
C Positive integer Number of code blocks
Lcb 0, 24 Number of parity bits per code block
F Nonnegative integer Number of <NULL> filler bits per code block
Zc Positive integer Lifting size selection
K Nonnegative integer Number of bits per code block after CBS
N Nonnegative integer Number of bits per code block after LDPC coding

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPDSCH | nrPDSCHDecode

Introduced in R2018b

 nrDLSCHInfo

1-113

nrPRBS
Generate PRBS

Syntax
[seq,cinit] = nrPRBS(cinit,n)
[seq,cinit] = nrPRBS(cinit,n,Name,Value)

Description
[seq,cinit] = nrPRBS(cinit,n) returns the elements specified by n of the
pseudorandom binary sequence (PRBS) generator, when initialized with cinit. The
function implements the generator specified in TS 38.211 Section 5.2.1 [1] on page 1-116.
For uniformity with the channel-specific PRBS functions, the function also returns the
initialization value cinit.

[seq,cinit] = nrPRBS(cinit,n,Name,Value) specifies additional output
formatting options by using one or more name-value pair arguments. Unspecified options
take default values.

Examples

Generate Pseudorandom Scrambling Sequence

Generate a 1000-bit binary scrambling sequence. Initialize the PRBS generator with the
specified value.

1 Functions — Alphabetical List

1-114

cinit = 9;
prbs = nrPRBS(cinit,1000);

Input Arguments
cinit — Initialization value for PRBS generator
integer

Initialization value for the PRBS generator, specified as an integer from 0 to 2147483647.
Data Types: double

n — Elements in returned sequence
nonnegative integer | [p m] row vector

Elements in returned sequence, specified as one of these values:

• Nonnegative integer — seq contains the first n elements of the PRBS generator.
• [p m] row vector — seq contains m contiguous elements of the PRBS generator,

starting at position p (zero-based).

Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MappingType','signed' specify non-default sequence formatting
properties.

MappingType — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as the comma-separated pair consisting of
'MappingType' and one of these values:

• 'binary' — This value maps true to 1 and false to 0. The data type of the output
sequence is logical.

 nrPRBS

1-115

• 'signed' — This value maps true to –1 and false to 1. The data type of the output
sequence is double. To specify single data type, use the 'OutputDataType' name-
value pair.

Data Types: char | string

OutputDataType — Data type of output sequence
'double' (default) | 'single'

Data type of output sequence, specified as the comma-separated pair consisting of
'OutputDataType' and 'double' or 'single'. This name-value pair applies only
when 'MappingType' is set to 'signed'.
Data Types: char | string

Output Arguments
seq — Pseudorandom scrambling sequence
logical column vector | numeric column vector

Pseudorandom scrambling sequence, returned as a logical or numeric column vector. The
output seq contains the elements of the PRBS generator specified by n. If you set
'MappingType' to 'signed', the data type of seq is either double or single.
Otherwise, the data type of seq is logical.
Data Types: double | single | logical

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-116

See Also
Functions
nrPBCHPRBS | nrPDCCHPRBS | nrPDSCHPRBS

Introduced in R2018b

 nrPRBS

1-117

nrSymbolDemodulate
Demodulate and convert symbols to bits

Syntax
out = nrSymbolDemodulate(in,mod)
out = nrSymbolDemodulate(in,mod,nVar)
out = nrSymbolDemodulate(in,mod,'DecisionType',decision)

Description
out = nrSymbolDemodulate(in,mod) demodulates complex symbols in codeword in
to soft bits using modulation scheme mod. The function implements the inverse of TS
38.211 Section 5.1 [1].

out = nrSymbolDemodulate(in,mod,nVar) specifies the noise variance scaling
factor for the soft bits.

out = nrSymbolDemodulate(in,mod,'DecisionType',decision) specifies the
demodulation decision mode by using a name-value pair argument.

Examples

QPSK Demodulation with Soft Decision Mode

Generate a random sequence of binary values of length 40. Generate modulated symbols
using QPSK modulation. Perform QPSK demodulation in soft decision mode for a noise
variance of 0.1.

data = randi([0 1],40,1);
modsymb = nrSymbolModulate(data,'QPSK');
nVar = 0.1;

1 Functions — Alphabetical List

1-118

recsymb = awgn(modsymb,1/nVar,1,'linear');
out = nrSymbolDemodulate(recsymb,'QPSK',0.1);

16QAM Demodulation with Hard Decision Mode

Generate a random sequence of binary values of length 100. Generate modulated symbols
using 16-QAM modulation. Add a noise to the modulated symbols corresponding to an
SNR of 15 dB. Perform 16-QAM demodulation in hard decision mode. Check for bit errors.

data = randi([0 1],100,1,'int8');
modsymb = nrSymbolModulate(data,'16QAM');
recsymb = awgn(modsymb,15);
demodbits = nrSymbolDemodulate(recsymb,'16QAM','DecisionType','Hard');
numErr = biterr(data,demodbits)

numErr =

0

Input Arguments
in — Codeword to demodulate
complex column vector

Codeword to demodulate, specified as a complex column vector.
Data Types: double | single
Complex Number Support: Yes

mod — Modulation scheme
'pi/2-BPSK' | 'BPSK' | 'QPSK' | '16QAM' | '64QAM' | '256QAM'

Modulation scheme, specified as 'pi/2-BPSK', 'BPSK', 'QPSK', '16QAM', '64QAM', or
'256QAM'. This modulation scheme determines the modulation type to be performed on
the input codeword and the number of bits used per modulation symbol.

 nrSymbolDemodulate

1-119

Modulation Scheme Number of Bits per Symbol
'pi/2-BPSK'

'BPSK'

1

'QPSK' 2
'16QAM' 4
'64QAM' 6
'256QAM' 8

Data Types: char | string

nVar — Noise variance
1e-10 (default) | nonnegative numeric scalar

Noise variance, specified as a nonnegative numeric scalar. The soft bits are scaled with
the variance of additive white Gaussian noise (AWGN). The default value corresponds to
an SNR of 100 dB, assuming unit signal power. This argument applies only for soft
decision mode.

Note The default value assumes the modulator and demodulator are connected back-to-
back where the noise variance is zero. To avoid +/-Inf values in the output, the function
uses 1e-10 as default value for noise variance. To get appropriate results when the signal
is transmitted through a noisy channel, adjust the noise variance accordingly.

Data Types: double

decision — Decision mode
'Soft' (default) | 'Hard'

Decision mode, specified as 'Soft' or 'Hard'. The decision mode controls the
demodulation type performed on the received symbols.

• 'Soft' — Soft decision mode results in a numeric output containing the bitwise
approximation to the log-likelihood ratios of the demodulated bits. The output out
inherits its data type from the input in.

• 'Hard'— Hard decision mode results in a binary output containing groups of bits
corresponding to the closest constellation points to the input in. The output out is
type-cast to int8.

1 Functions — Alphabetical List

1-120

Data Types: char | string

Output Arguments
out — Demodulated output bits
numeric column vector | binary column vector

Demodulated output bits, returned as a numeric column vector or binary column vector.
Demodulation is performed assuming the input constellation power normalization defined
in TS 38.211 section 5.1 [1].

Modulation Scheme Constellation Power Normalization
Factor

'pi/2-BPSK'

'BPSK'

'QPSK'

1/sqrt(2)

'16QAM' 1/sqrt(10)
'64QAM' 1/sqrt(42)
'256QAM' 1/sqrt(170)

Each demodulated symbol is mapped to a group of bits corresponding to the number of
bits per symbol in the modulation scheme mod. The first bit represents the most
significant bit, and the last bit represents the least significant bit. The length of out is the
length of the input in multiplied by the number of bits per symbol. The decision mode
controls the content and the data type of the demodulated output bits.
Data Types: double | single | int8

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

 nrSymbolDemodulate

1-121

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrLayerDemap | nrPBCHDecode | nrPDCCHDecode | nrPDSCHDecode | nrPRBS |
nrSymbolModulate

Introduced in R2018b

1 Functions — Alphabetical List

1-122

nrSymbolModulate
Generate modulated symbols

Syntax
out = nrSymbolModulate(in,mod)
out = nrSymbolModulate(in,mod,'OutputDataType',datatype)

Description
out = nrSymbolModulate(in,mod) maps the bit sequence in codeword in to complex
modulation symbols using modulation scheme mod and returns modulated symbols. The
function implements TS 38.211 Section 5.1 [1].

out = nrSymbolModulate(in,mod,'OutputDataType',datatype) specifies the
data type of the modulated output symbols by using a name-value pair argument. The
function uses the specified data type for intermediate computations.

Examples

Generate 16-QAM Modulated Symbols

Generate a random sequence of binary values of length 40. Generate modulated symbols
using 16-QAM modulation.

data = randi([0 1],40,1);
sym = nrSymbolModulate(data,'16QAM');

Generate QPSK Modulated Symbols

Generate a random sequence of binary values of length 20. Generate modulated symbols
using QPSK modulation and specify single-precision data type for the output.

 nrSymbolModulate

1-123

data = randi([0 1],20,1,'int8');
sym = nrSymbolModulate(data,'QPSK','OutputDataType','single');

Input Arguments
in — Codeword to modulate
column vector of binary values

Codeword to modulate, specified as a column vector of binary values. The codeword
length must be a multiple of the number of bits per symbol, specified by the modulation
scheme mod.
Data Types: double | int8 | logical

mod — Modulation scheme
'pi/2-BPSK' | 'BPSK' | 'QPSK' | '16QAM' | '64QAM' | '256QAM'

Modulation scheme, specified as 'pi/2-BPSK', 'BPSK', 'QPSK', '16QAM', '64QAM', or
'256QAM'. This modulation scheme determines the modulation type to be performed on
the input codeword and the number of bits used per modulation symbol.

Modulation Scheme Number of Bits per Symbol
'pi/2-BPSK'

'BPSK'

1

'QPSK' 2
'16QAM' 4
'64QAM' 6
'256QAM' 8

Data Types: char | string

datatype — Data type of modulated output symbols
'double' (default) | 'single'

Data type of modulated output symbols, specified as 'double' or 'single'. The input
argument datatype determines the data type of the modulated output symbols and the
data type that the function uses for intermediate computations.
Data Types: char | string

1 Functions — Alphabetical List

1-124

Output Arguments
out — Modulated output symbols
complex column vector

Modulated output symbols, returned as a complex column vector. The length of out is the
length of the codeword in divided by the number of bits per symbol, specified by the
modulation scheme mod.
Data Types: double | single
Complex Number Support: Yes

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrLayerMap | nrPBCH | nrPDCCH | nrPDSCH | nrPRBS | nrSymbolDemodulate

Introduced in R2018b

 nrSymbolModulate

1-125

nrLayerMap
Layer mapping of modulated and scrambled codewords

Syntax
out = nrLayerMap(in,nLayers)

Description
out = nrLayerMap(in,nLayers) performs layer mapping of one or two codewords,
specified by in, based on the number of transmission layers nLayers. The transmission
layers in the output are formed by multiplexing the modulation symbols from either one
or two codewords. The function implements the transpose of the overall layer mapping
specified in TS 38.211 Section 6.3.1.3 and Section 7.3.1.3 [1]. In other words, the symbols
in a layer lie in columns rather than rows.

Examples

Layer Mapping of One Codeword to Four Layers

Perform layer mapping of one codeword of length 40, using 4 transmission layers.

out = nrLayerMap(ones(40,1),4);
sizeOut = size(out)

sizeOut =

 10 4

Layer Mapping of Two Codewords to Five Layers

Perform layer mapping of two codewords of length 20 and 30 respectively, using 5
transmission layers.

1 Functions — Alphabetical List

1-126

out = nrLayerMap({ones(20,1),ones(30,1)},5);
sizeOut = size(out)

sizeOut =

 10 5

Input Arguments
in — Modulation symbols in codewords
complex column vector | cell array of one or two complex column vectors

Modulation symbols in codewords, specified as one of these values:

• Complex column vector — Use this value to specify one codeword.
• Cell array of one or two complex column vectors — Use this value to specify one or

two codewords.

Data Types: double

nLayers — Number of transmission layers
integer from 1 to 8

Number of transmission layers, specified as an integer from 1 to 8.
Data Types: double

Output Arguments
out — Layered modulation symbols
complex matrix

Layered modulation symbols, returned as a complex matrix of size M-by-nLayers. M is the
number of modulation symbols (rows) in a transmission layer (column). The output out
inherits the data type of the input in.

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

 nrLayerMap

1-127

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrLayerDemap | nrPDSCH | nrSymbolModulate

Introduced in R2018b

1 Functions — Alphabetical List

1-128

nrLayerDemap
Layer demapping onto scrambled and modulated codewords

Syntax
out = nrLayerDemap(in)

Description
out = nrLayerDemap(in) returns one or two codewords obtained from layer
demapping the received layered symbols specified by in. The function determines the
number of codewords based on the number of layers, as specified in TS 38.211 Table
7.3.1.3-1 [1].

Examples

Layer Mapping and Demapping of Single Codeword

Map a single codeword onto four layers. Recover the original codeword using layer
demapping. Check for errors.

codeword = ones(20,1);
nLayers = 4;
layeredOut = nrLayerMap(codeword,nLayers);
out = nrLayerDemap(layeredOut);
isequal(codeword,out{1})

ans =

logical

 nrLayerDemap

1-129

1

Input Arguments
in — Layered modulation symbols
complex matrix

Layered modulation symbols, specified as a complex matrix of size M-by-nLayers. M is the
number of modulation symbols in a transmission layer. nLayers is the number of
transmission layers in the range 1 to 8.
Data Types: double

Output Arguments
out — Modulation symbols in codewords
cell array of one or two complex column vectors

Modulation symbols in codewords, returned as a cell array of one or two complex column
vectors. This output inherits the data type of the input in. One vector corresponds to one
codeword. The number of codewords is based on the number of layers. The function
determines the number of codewords using TS 38.211 Table 7.3.1.3-1.
Data Types: cell

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-130

See Also
Functions
nrLayerMap | nrPDSCHDecode | nrSymbolDemodulate

Introduced in R2018b

 nrLayerDemap

1-131

nrPSSIndices
Get PSS resource element indices

Syntax
ind = nrPSSIndices
ind = nrPSSIndices(Name,Value)

Description
ind = nrPSSIndices returns the resource element indices for the primary
synchronization signal (PSS), as defined in TS 38.211 Section 7.4.3.1 [1]. The returned
indices are one-based using linear indexing form. This indexing form can directly index
the elements of a 240-by-4 matrix corresponding to the Synchronization Signal / Physical
Broadcast Channel (SS/PBCH) block. The order of the indices indicates how the PSS
modulation symbols are mapped.

ind = nrPSSIndices(Name,Value) specifies index formatting options by using one or
more name-value pair arguments. Unspecified options take default values.

Examples

Get PSS Resource Element Indices

Generate the 127 resource element indices associated with the PSS within a single SS/
PBCH block.

ind = nrPSSIndices

ind =

 127×1 uint32 column vector

 57

1 Functions — Alphabetical List

1-132

 58
 59
 60
 61
 62
 ...

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IndexStyle','subscript','IndexBase','0based' specifies nondefault
resource element index formatting options.

IndexStyle — Resource element indexing form
'index' (default) | 'subscript'

Resource element indexing form, specified as the comma-separated pair consisting of
'IndexStyle' and one of these values:

• 'index' — The indices are in linear index form.
• 'subscript' — The indices are in [subcarrier, symbol, antenna] subscript row form.

Data Types: char | string

IndexBase — Resource element indexing base
'1based' (default) | '0based'

Resource element indexing base, specified as the comma-separated pair consisting of
'IndexBase' and one of these values:

• '1based' — The index counting starts from one.
• '0based' — The index counting starts from zero.

Data Types: char | string

 nrPSSIndices

1-133

Output Arguments
ind — PSS resource element indices
column vector | M-by-3 matrix

PSS resource element indices, returned as one of these values:

• Column vector — When 'IndexStyle' is 'index'.
• M-by-3 matrix — When 'IndexStyle' is 'subscript'. The matrix rows correspond

to the [subcarrier, symbol, antenna] subscripts based on the number of subcarriers
and OFDM symbols in an SS/PBCH block, and the number of antennas, respectively.

Depending on 'IndexBase', the indices are either one-based or zero-based.
Data Types: uint32

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPBCHDMRSIndices | nrPBCHIndices | nrPSS | nrSSSIndices

Introduced in R2018b

1 Functions — Alphabetical List

1-134

nrSSSIndices
Get SSS resource element indices

Syntax
ind = nrSSSIndices
ind = nrSSSIndices(Name,Value)

Description
ind = nrSSSIndices returns the resource element indices for the secondary
synchronization signal (SSS), as defined in TS 38.211 Section 7.4.3.1 [1]. The returned
indices are one-based using linear indexing form. This indexing form can directly index
the elements of a 240-by-4 matrix corresponding to the Synchronization Signal / Physical
Broadcast Channel (SS/PBCH) block. The order of the indices indicates how the SSS
modulation symbols are mapped.

ind = nrSSSIndices(Name,Value) specifies index formatting options by using one or
more name-value pair arguments. Unspecified options take default values.

Examples

Get SSS Resource Element Indices

Generate the 127 resource element indices associated with the SSS within a single SS/
PBCH block.

ind = nrSSSIndices

ind =

 127×1 uint32 column vector

 537

 nrSSSIndices

1-135

 538
 539
 540
 541
 542
 ...

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IndexStyle','subscript','IndexBase','0based' specifies nondefault
resource element index formatting options.

IndexStyle — Resource element indexing form
'index' (default) | 'subscript'

Resource element indexing form, specified as the comma-separated pair consisting of
'IndexStyle' and one of these values:

• 'index' — The indices are in linear index form.
• 'subscript' — The indices are in [subcarrier, symbol, antenna] subscript row form.

Data Types: char | string

IndexBase — Resource element indexing base
'1based' (default) | '0based'

Resource element indexing base, specified as the comma-separated pair consisting of
'IndexBase' and one of these values:

• '1based' — The index counting starts from one.
• '0based' — The index counting starts from zero.

Data Types: char | string

1 Functions — Alphabetical List

1-136

Output Arguments
ind — SSS resource element indices
column vector (default) | M-by-3 matrix

SSS resource element indices, returned as one of these values:

• Column vector — When 'IndexStyle' is 'index'.
• M-by-3 matrix — When 'IndexStyle' is 'subscript'. The matrix rows correspond

to the [subcarrier, symbol, antenna] subscripts based on the number of subcarriers
and OFDM symbols in an SS/PBCH block, and the number of antennas, respectively.

Depending on 'IndexBase', the indices are either one-based or zero-based.
Data Types: uint32

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPBCHDMRSIndices | nrPBCHIndices | nrPSSIndices | nrSSS

Introduced in R2018b

 nrSSSIndices

1-137

nrPSS
Generate PSS symbols

Syntax
sym = nrPSS(ncellid)
sym = nrPSS(ncellid,'OutputDataType',datatype)

Description
sym = nrPSS(ncellid) returns the primary synchronization signal (PSS) symbols for
the physical layer cell identity number ncellid. The function implements TS 38.211
Section 7.4.2.2 [1].

sym = nrPSS(ncellid,'OutputDataType',datatype) specifies the data type of the
PSS symbol.

Examples

Generate PSS Symbols

Generate the sequence of 127 PSS binary phase shift keying (BPSK) modulation symbols
for a given cell identity. The PSS is transmitted in the first symbol of a Synchronization
Signal / Physical Broadcast Channel (SS/PBCH) block.

ncellid = 17;
pss = nrPSS(ncellid)

pss =

 -1
 -1
 -1
 -1

1 Functions — Alphabetical List

1-138

 -1
 ...

Input Arguments
ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

datatype — Data type of output symbols
'double' (default) | 'single'

Data type of output symbols, specified as 'double' or 'single'.
Data Types: char | string

Output Arguments
sym — PSS symbols
column vector of real numbers

PSS symbols, returned as a column vector of real numbers.
Data Types: single | double

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

 nrPSS

1-139

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPBCH | nrPBCHDMRS | nrPSSIndices | nrSSS

Introduced in R2018b

1 Functions — Alphabetical List

1-140

nrSSS
Generate SSS symbols

Syntax
sym = nrSSS(ncellid)
sym = nrSSS(ncellid,'OutputDataType',datatype)

Description
sym = nrSSS(ncellid) returns the secondary synchronization signal (SSS) symbols for
the physical layer cell identity number ncellid. The function implements TS 38.211
Section 7.4.2.3 [1].

sym = nrSSS(ncellid,'OutputDataType',datatype) specifies the data type of the
SSS symbol.

Examples

Generate SSS Symbols

Generate the sequence of 127 SSS binary phase shift keying (BPSK) modulation symbols
for a given cell identity. The SSS is transmitted in the third symbol of a Synchronization
Signal / Physical Broadcast Channel (SS/PBCH) block.

ncellid = 17;
sss = nrSSS(ncellid)

sss =

 -1
 1
 -1
 -1

 nrSSS

1-141

 -1
 1
 ...

Input Arguments
ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

datatype — Data type of output symbols
'double' (default) | 'single'

Data type of output symbols, specified as 'double' or 'single'.
Data Types: char | string

Output Arguments
sym — SSS symbols
column vector of real numbers

SSS symbols, returned as a column vector of real numbers.
Data Types: single | double

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

1 Functions — Alphabetical List

1-142

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPBCH | nrPBCHDMRS | nrPSS | nrSSSIndices

Introduced in R2018b

 nrSSS

1-143

nrPBCHDMRSIndices
Get PBCH DM-RS resource element indices

Syntax
ind = nrPBCHDMRSIndices(ncellid)
ind = nrPBCHDMRSIndices(ncellid,Name,Value)

Description
ind = nrPBCHDMRSIndices(ncellid) returns the resource element indices for the
physical broadcast channel (PBCH) demodulation reference signal (DM-RS). The function
implements TS 38.211 Section 7.4.3.1 [1]. The corresponding physical layer cell is
identified by ncellid. The returned indices are one-based using linear indexing form.
This indexing form can directly index the elements of a 240-by-4 matrix corresponding to
the Synchronization Signal / Physical Broadcast Channel (SS/PBCH) block. The order of
the indices indicates how the PBCH DM-RS modulation symbols are mapped.

ind = nrPBCHDMRSIndices(ncellid,Name,Value) specifies additional index
formatting options by using one or more name-value pair arguments. Unspecified options
take default values.

Examples

Get PBCH DM-RS Resource Element Indices

Generate the 144 resource element indices associated with the PBCH DM-RS symbols
within a single SS/PBCH block for a given cell identity.

ncellid = 17;
indices = nrPBCHDMRSIndices(ncellid)

indices =

1 Functions — Alphabetical List

1-144

 144×1 uint32 column vector

 242
 246
 250
 254
 258
 ...

Input Arguments
ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IndexStyle','subscript','IndexBase','0based' specifies nondefault
resource element index formatting properties.

IndexStyle — Resource element indexing form
'index' (default) | 'subscript'

Resource element indexing form, specified as the comma-separated pair consisting of
'IndexStyle' and one of these values:

• 'index' — The indices are in linear index form.
• 'subscript' — The indices are in [subcarrier, symbol, antenna] subscript row form.

Data Types: char | string

IndexBase — Resource element indexing base
'1based' (default) | '0based'

 nrPBCHDMRSIndices

1-145

Resource element indexing base, specified as the comma-separated pair consisting of
'IndexBase' and one of these values:

• '1based' — The index counting starts from one.
• '0based' — The index counting starts from zero.

Data Types: char | string

Output Arguments
ind — PBCH DM-RS resource element indices
column vector | M-by-3 matrix

PBCH DM-RS resource element indices, returned as one of the following.

• Column vector — When 'IndexStyle' is 'index'.
• M-by-3 matrix — When 'IndexStyle' is 'subscript'. The matrix rows correspond

to the [subcarrier, symbol, antenna] subscripts based on the number of subcarriers
and OFDM symbols in a SS/PBCH block, and the number of antennas, respectively.

Depending on 'IndexBase', the indices are either one-based or zero-based.
Data Types: uint32

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-146

See Also
Functions
nrPBCHDMRS | nrPBCHIndices | nrPSSIndices | nrSSSIndices

Introduced in R2018b

 nrPBCHDMRSIndices

1-147

nrPBCHDMRS
Generate PBCH DM-RS symbols

Syntax
sym = nrPBCHDMRS(ncellid,ibar_SSB)
sym = nrPBCHDMRS(ncellid,ibar_SSB,'OutputDataType',datatype)

Description
sym = nrPBCHDMRS(ncellid,ibar_SSB) returns the physical broadcast channel
(PBCH) demodulation reference signal (DM-RS) symbols for the physical layer cell,
identified by ncellid. The ibar_SSB input specifies the time-dependent part of the DM-
RS scrambling initialization. The function implements TS 38.211 Section 7.4.1.4.1 [1].

sym = nrPBCHDMRS(ncellid,ibar_SSB,'OutputDataType',datatype) specifies
the data type of the DM-RS symbol.

Examples

Generate PBCH DM-RS Symbols

Generate the sequence of 144 PBCH DM-RS symbols associated with the third SS block
(i_SSB = 2) in the second half frame (n_hf = 1) of a frame.

ncellid = 17;
i_SSB = 2;
n_hf = 1;
ibar_SSB = i_SSB + (4*n_hf);

1 Functions — Alphabetical List

1-148

dmrs = nrPBCHDMRS(ncellid,ibar_SSB);

Input Arguments
ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.
Data Types: double

ibar_SSB — Time-dependent part of DM-RS scrambling initialization
integer from 0 to 7 (default)

Time-dependent part of the DM-RS scrambling initialization, specified as an integer from
0 to 7. ibar_SSB is derived in a synchronization signal (SS) burst configuration, from the
least significant bits (LSBs) of the SS/PBCH block index and the half-frame number.

• If the number of SS/PBCH blocks per half-frame is 4, ibar_SSB = iSSB + 4 × nhf,
where iSSB is the two LSBs of the SS/PBCH block index (0 to 3). nhf is the half-frame
number within the frame (0,1).

• If the number of SS/PBCH blocks per half-frame is 8 or 64, ibar_SSB is the three
LSBs of the SS/PBCH block index (0 to 7).

Data Types: double

datatype — Data type of output symbols
'double' (default) | 'single'

Data type of output symbols, specified as 'double' or 'single'.
Data Types: char | string

Output Arguments
sym — PBCH DM-RS symbols
complex column vector

PBCH DM-RS symbols, returned as a complex column vector.

 nrPBCHDMRS

1-149

Data Types: single | double

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPBCH | nrPBCHDMRSIndices | nrPRBS | nrPSS | nrSSS | nrSymbolModulate

Introduced in R2018b

1 Functions — Alphabetical List

1-150

nrPerfectChannelEstimate
Perfect channel estimation

Syntax
hest = nrPerfectChannelEstimate(pathGains,pathFilters,nrb,scs,
initialSlot)
hest = nrPerfectChannelEstimate(___ ,toffset)
hest = nrPerfectChannelEstimate(___ ,toffset,sampleTimes)
hest = nrPerfectChannelEstimate(___ ,cpl)

Description
hest = nrPerfectChannelEstimate(pathGains,pathFilters,nrb,scs,
initialSlot) performs perfect channel estimation and returns the perfect channel
estimate. The function first reconstructs the channel impulse response from the channel
path gains pathGains and the path filter impulse response pathFilters. The function
then performs orthogonal frequency division multiplexing (OFDM) demodulation for nrb
number of resource blocks with subcarrier spacing scs, and initial slot number
initialSlot.

hest = nrPerfectChannelEstimate(___ ,toffset) also specifies the timing offset
in addition to the input arguments in the previous syntax. The timing offset indicates the
OFDM demodulation starting point on the reconstructed waveform.

hest = nrPerfectChannelEstimate(___ ,toffset,sampleTimes) also specifies
the sample times of the channel snapshots in addition to the input arguments in the first
previous syntax.

hest = nrPerfectChannelEstimate(___ ,cpl) also specifies the cyclic prefix
length in addition to the input arguments in the previous syntax.

Examples

 nrPerfectChannelEstimate

1-151

Plot Estimated Channel Magnitude Response for TDL-C Channel Model

Define a channel configuration structure using an nrTDLChannel System object. Use
delay profileTDL-C from TR 38.901 Section 7.7.2.

SR = 7.68e6;
tdl = nrTDLChannel;
tdl.DelayProfile = 'TDL-C';
tdl.DelaySpread = 100e-9;
tdl.MaximumDopplerShift = 300;
tdl.SampleRate = SR;

Create a random waveform with a duration of 1 subframe.

T = SR*1e-3;
tdlInfo = info(tdl);
Nt = tdlInfo.NumTransmitAntennas;
in = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel. Obtain the path filters used in channel
filtering.

[~,pathGains] = tdl(in);
pathFilters = getPathFilters(tdl);

Perform perfect channel estimation using the specified number of blocks, subcarrier
spacing, and slot number.

NRB = 25;
SCS = 15;
nSlot = 0;

hest = nrPerfectChannelEstimate(pathGains,pathFilters,NRB,SCS,nSlot);
size(hest)

ans = 1×3

 300 14 2

Plot the estimated channel magnitude response for the first receive antenna.

figure;
surf(abs(hest(:,:,1)));
shading('flat');

1 Functions — Alphabetical List

1-152

xlabel('OFDM Symbols');
ylabel('Subcarriers');
zlabel('|H|');
title('Channel Magnitude Response');

Repeat the channel estimate for extended cyclic prefix.

hest = nrPerfectChannelEstimate(pathGains,pathFilters,NRB,SCS, ...
 nSlot,'extended');
size(hest)

ans = 1×3

 300 12 2

 nrPerfectChannelEstimate

1-153

Plot the updated results.

figure;
surf(abs(hest(:,:,1)));
shading('flat');
xlabel('OFDM Symbols');
ylabel('Subcarriers');
zlabel('|H|');
title('Channel Magnitude Response with Extended Cyclic Prefix');

1 Functions — Alphabetical List

1-154

Plot Estimated Channel Magnitude Response for CDL-D Channel Model

Define a channel configuration structure using an nrCDLChannel System object. Use
delay profile CDL-C from TR 38.901 Section 7.7.1.

 cdl = nrCDLChannel;
 cdl.DelayProfile = 'CDL-D';
 cdl.DelaySpread = 30e-9;
 cdl.MaximumDopplerShift = 5;

Create a random waveform with a duration of 1 subframe.

SR = 15.36e6;
T = SR*1e-3;
cdl.SampleRate = SR;
cdlInfo = info(cdl);
Nt = cdlInfo.NumTransmitAntennas;
in = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel. Obtain the path filters used in channel
filtering.

[~,pathGains,sampleTimes] = cdl(in);
pathFilters = getPathFilters(cdl);

Perform timing offset estimation using the pahh filter and path gains.

offset = nrPerfectTimingEstimate(pathGains,pathFilters);

Perform perfect channel estimation. Use the specified number of blocks, subcarrier
spacing, slot number, timing offset, and sample times.

NRB = 25;
SCS = 15;
nSlot = 0;
hest = nrPerfectChannelEstimate(pathGains,pathFilters,...
 NRB,SCS,nSlot,offset,sampleTimes);
size(hest)

ans = 1×4

 300 14 2 8

Plot the estimated channel magnitude response for the first receive antenna.

 nrPerfectChannelEstimate

1-155

figure;
surf(abs(hest(:,:,1)));
shading('flat');
xlabel('OFDM Symbols');
ylabel('Subcarriers');
zlabel('|H|');
title('Channel Magnitude Response');

Input Arguments
pathGains — Channel path gains of fading process
NCS-by-NP-by-NT-by-NR complex matrix

1 Functions — Alphabetical List

1-156

Channel path gains of the fading process, specified as an NCS-by-NP-by-NT-by-NR complex
matrix, where:

• NCS is the number of channel snapshots.
• NP is the number of paths.
• NT is the number of transmit antennas.
• NR is the number of receive antennas.

Data Types: single | double
Complex Number Support: Yes

pathFilters — Path filter impulse response
NH-by-NP real matrix

Path filter impulse response, specified as an NH-by-NP real matrix, where:

• NH is the number of impulse response samples.
• NP is the number of paths.

Each column of the matrix contains the filter impulse response for each path of the delay
profile.
Data Types: double

nrb — Number of resource blocks
integer

Number of resource blocks, specified as an integer from 1 to 275.
Data Types: double

scs — Subcarrier spacing in kHz
15 | 30 | 60 | 120 | 240

Subcarrier spacing in kHz, specified as 15, 30, 60, 120, or 240.
Data Types: double

initialSlot — Zero-based initial slot number
nonnegative integer

 nrPerfectChannelEstimate

1-157

Zero-based initial slot number, specified as a nonnegative integer. The function selects the
appropriate cyclic prefix lengths for the OFDM demodulation based on the value of
initialSlot modulo the number of slots per subframe.
Data Types: double

toffset — Timing offset in samples
nonnegative integer

Timing offset in samples, specified as a nonnegative integer. The timing offset indicates
the OFDM demodulation starting point on the reconstructed waveform. The offset
accounts for propagation delays, which is essential when obtaining the perfect estimate of
the channel seen by a synchronized receiver. Use nrPerfectTimingEstimate to derive
toffset.
Data Types: double

sampleTimes — Sample times of channel snapshots
NCS-by-1 column vector of nonnegative real numbers

Sample times of channel snapshots, specified as an NCS-by-1 column vector of
nonnegative real numbers. The number of channel snapshots, NCS, is identical to the first
dimension of pathGains.
Data Types: double

cpl — Cyclic prefix length
'normal' | 'extended'

Cyclic prefix length, specified as one of these values.

• 'normal' — Use this value to specify normal cyclic prefix.
• 'extended' — Use this value to specify extended cyclic prefix. Note that for the

numerologies specified in TS 38.211 Section 4.2, extended cyclic prefix length is
applicable only for 60 kHz subcarrier spacing.

Data Types: char | string

Output Arguments
hest — Perfect channel estimate
NSC-by-NSYM-by-NR-by-NT array of complex numbers

1 Functions — Alphabetical List

1-158

Perfect channel estimate, returned as an NSC-by-NSYM-by-NR-by-NT array of complex or
real numbers, where:

• NSC is the number of subcarriers.
• NSYM is the number of OFDM symbols.
• NR is the number of receive antennas.
• NT is the number of transmit antennas.

hest inherits its data type from pathGains.
Data Types: double | single

References
[1] 3GPP TS 38.211. “NR; Physical channels and modulation.” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
nrPerfectTimingEstimate

System Objects
nrCDLChannel | nrTDLChannel

Introduced in R2018b

 nrPerfectChannelEstimate

1-159

nrPerfectTimingEstimate
Perfect timing estimation

Syntax
[toffset,mag] = nrPerfectTimingEstimate(pathGains,pathFilters)

Description
[toffset,mag] = nrPerfectTimingEstimate(pathGains,pathFilters)
performs perfect timing estimation. To find the peak of the channel impulse response, the
function first reconstructs the impulse response from the channel path gains pathGains
and the path filter impulse response pathFilters. The channel impulse response is
averaged across all channel snapshots and summed across all transmit and receive
antennas before timing estimation. The function returns the estimated timing offset
toffset and the channel impulse response magnitude mag.

Examples

Plot Channel Impulse Magnitude and Timing Offset for TDL-C Channel Model

Define a channel configuration structure using an nrTDLChannel System object. Use
delay profile TDL-C from TR 38.901 Section 7.7.2.

tdl = nrTDLChannel;
tdl.DelayProfile = 'TDL-C';
tdl.DelaySpread = 100e-9;

Create a random waveform with a duration of 1 subframe.

tdlInfo = info(tdl);
Nt = tdlInfo.NumTransmitAntennas;
in = complex(zeros(100,Nt),zeros(100,Nt));

Transmit the input waveform through the channel.

1 Functions — Alphabetical List

1-160

[~,pathGains] = tdl(in);

Obtain the path filters used in channel filtering.

pathFilters = getPathFilters(tdl);

Estimate timing offset.

[offset,mag] = nrPerfectTimingEstimate(pathGains,pathFilters);

Plot the magnitude of the channel impulse response and the timing offset estimate.

[Nh,Nr] = size(mag);
plot(0:(Nh-1),mag,'o:');
hold on;
plot([offset offset],[0 max(mag(:))*1.25],'k:','LineWidth',2);
axis([0 Nh-1 0 max(mag(:))*1.25]);
legends = "|h|, antenna " + num2cell(1:Nr);
legend([legends "Timing offset estimate"]);
ylabel('|h|');
xlabel('Channel Impulse Response Samples');

 nrPerfectTimingEstimate

1-161

Input Arguments
pathGains — Channel path gains of fading process
NCS-by-NP-by-NT-by-NR complex matrix

Channel path gains of the fading process, specified as an NCS-by-NP-by-NT-by-NR complex
matrix, where:

• NCS is the number of channel snapshots.
• NP is the number of paths.

1 Functions — Alphabetical List

1-162

• NT is the number of transmit antennas.
• NR is the number of receive antennas.

Data Types: single | double
Complex Number Support: Yes

pathFilters — Path filter impulse response
NH-by-NP real matrix

Path filter impulse response, specified as an NH-by-NP real matrix, where:

• NH is the number of impulse response samples.
• NP is the number of paths.

Each column of the matrix contains the filter impulse response for each path of the delay
profile.
Data Types: double

Output Arguments
toffset — Timing offset in samples
nonnegative integer

Timing offset in samples, returned as a nonnegative integer. The number of samples is
relative to the first sample of the channel impulse response reconstructed from
pathGains and pathFilters.
Data Types: double

mag — Channel impulse response magnitude
NH-by-NR real matrix

Channel impulse response magnitude for each receive antenna, returned as an NH-by-NR
real matrix.

• NH is the number of impulse response samples.
• NR is the number of receive antennas.

mag inherits its data type from pathGains.
Data Types: single | double

 nrPerfectTimingEstimate

1-163

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
System Objects
nrCDLChannel | nrTDLChannel

Functions
nrPerfectChannelEstimate

Introduced in R2018b

1 Functions — Alphabetical List

1-164

nrEqualizeMMSE
Minimum mean-squared error (MMSE) equalization

Syntax
[eqSym,csi] = nrEqualizeMMSE(rxSym,hest,nVar)

Description
[eqSym,csi] = nrEqualizeMMSE(rxSym,hest,nVar) applies MMSE equalization to
the extracted resource elements of a physical channel rxSym and returns the equalized
symbols in eqSym. The equalization process uses the estimated channel information hest
and the estimate of the received noise variance nVar. The function also returns the soft
channel state information csi.

Examples

Perform MMSE Equalization for PBCH

Perform MMSE equalization on extracted resource elements of the physical broadcast
channel (PBCH).

Create symbols and indices for a PBCH transmission.

ncellid = 146;
v = 0;
E = 864;
cw = randi([0 1],E,1);
pbchTxSym = nrPBCH(cw,ncellid,v);
pbchInd = nrPBCHIndices(ncellid);

Generate an empty resource array for one transmitting antenna. Populate the array with
the PBCH symbols by using the generated PBCH indices.

 nrEqualizeMMSE

1-165

P = 1;
txGrid = zeros([240 4 P]);
txGrid(pbchInd) = pbchTxSym;

Perform OFDM modulation.

txWaveform = ofdmmod(txGrid,256,[22 18 18 18],[1:8 249:256].');

Create channel matrix and apply channel to transmitted waveform.

R = 4;
H = dftmtx(max([P R]));
H = H(1:P,1:R);
H = H / norm(H);
rxWaveform = txWaveform * H;

Create channel estimate.

hEstGrid = repmat(permute(H.',[3 4 1 2]),[240 4]);
nEst = 0.1;

Perform OFDM demodulation.

rxGrid = ofdmdemod(rxWaveform,256,[22 18 18 18],0,[1:8 249:256].');

To prepare for PBCH decoding, use nrExtractResources to extract symbols from
received and channel estimate grids. Plot the received PBCH constellation.

[pbchRxSym,pbchHestSym] = nrExtractResources(pbchInd,rxGrid,hEstGrid);
figure;
plot(pbchRxSym,'o:');
title('Received PBCH Constellation');

1 Functions — Alphabetical List

1-166

Decode the PBCH with the extracted resource elements. Plot the equalized PBCH
constellation.

[pbchEqSym,csi] = nrEqualizeMMSE(pbchRxSym,pbchHestSym,nEst);
pbchBits = nrPBCHDecode(pbchEqSym,ncellid,v);
figure;
plot(pbchEqSym,'o:');
title('Equalized PBCH Constellation');

 nrEqualizeMMSE

1-167

Input Arguments
rxSym — Extracted resource elements
2-D numeric matrix

Extracted resource elements of a physical channel, specified as an NRE-by-R numeric
matrix. NRE is the number of resource elements extracted from each K-by-L plane of the
received grid. K is the number of subcarriers and L is the number of OFDM symbols. R is
the number of receive antennas.
Data Types: double
Complex Number Support: Yes

hest — Estimated channel information
3-D numeric array

Estimated channel information, specified as an NRE-by-R-by-P numeric array. NRE is the
number of resource elements extracted from each K-by-L plane of the received grid. K is
the number of subcarriers and L is the number of OFDM symbols. R is the number of
receive antennas. P is the number of transmission planes.

1 Functions — Alphabetical List

1-168

Data Types: double
Complex Number Support: Yes

nVar — Estimated noise variance
real nonnegative scalar

Estimated noise variance, specified as a real nonnegative scalar.
Data Types: double

Output Arguments
eqSym — Equalized symbols
2-D numeric matrix

Equalized symbols, returned as an NRE-by-P numeric matrix. NRE is the number of
resource elements extracted from each K-by-L plane of the received grid. K is the number
of subcarriers and L is the number of OFDM symbols. P is the number of transmission
planes.
Data Types: double
Complex Number Support: Yes

csi — Soft channel state information
2-D numeric matrix

Soft channel state information, returned as an NRE-by-P numeric matrix. NRE is the
number of resource elements extracted from each K-by-L plane of the received grid. K is
the number of subcarriers and L is the number of OFDM symbols. P is the number of
transmission planes.
Data Types: double
Complex Number Support: Yes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 nrEqualizeMMSE

1-169

See Also
Functions
nrExtractResources | nrPerfectChannelEstimate | nrPerfectTimingEstimate

Introduced in R2018b

1 Functions — Alphabetical List

1-170

nrExtractResources
Extract resource elements from resource array

Syntax
re = nrExtractResources(ind,grid)
[re,reind] = nrExtractResources(ind,grid)
[re1,...,reN,reind1,...,reindN] = nrExtractResources(ind,grid1,
grid2,....,gridN)
[___] = nrExtractResources(___ ,Name,Value)

Description
re = nrExtractResources(ind,grid) returns the resource elements from the
resource array grid using resource element indices ind. You can extract resource
elements from a resource array with different dimensionality than the resource array
addressed by the given indices. In this syntax, the specified indices are one-based using
linear indexing form. For more details on the resource extraction process, see
“Algorithms” on page 1-178.

[re,reind] = nrExtractResources(ind,grid) also returns reind, the indices of
the extracted resource elements re within the resource array grid. The array reind is
the same size as the extracted resource elements re.

[re1,...,reN,reind1,...,reindN] = nrExtractResources(ind,grid1,
grid2,....,gridN) extracts resource elements from multiple resource arrays using
the resource element indices ind.

[___] = nrExtractResources(___ ,Name,Value) specifies optional name-value
pair arguments in addition to any of the input argument sets in previous syntaxes. Use
these name-value pair arguments to specify the format of the input indices and the
extraction method. Unspecified arguments take default values.

Examples

 nrExtractResources

1-171

Extract PBCH Symbols and Channel Estimates for Decoding

Extract physical broadcast channel (PBCH) symbols from a received grid and associated
channel estimates in preparation for decoding a beamformed PBCH.

PBCH Coding and Beamforming

Create a random sequence of binary values corresponding to a BCH codeword. The
length of the codeword is 864, as specified in TS 38.212 Section 7.1.5. Using the
codeword, create symbols and indices for a PBCH transmission. Specify the physical layer
cell identity number.

E = 864;
cw = randi([0 1],E,1);
ncellid = 17;
v = 0;
pbchTxSym = nrPBCH(cw,ncellid,v);
pbchInd = nrPBCHIndices(ncellid);

Use nrExtractResources to create indices for the two transmit antennas of a
beamformed PBCH. Use these indices to map the beamformed PBCH into the transmitter
resource array.

P = 2;
txGrid = zeros([240 4 P]);
F = [1 1i];
[~,bfInd] = nrExtractResources(pbchInd,txGrid);
txGrid(bfInd) = pbchTxSym*F;

OFDM modulate the PBCH symbols mapped into the transmitter resource array.

txWaveform = ofdmmod(txGrid,256,[22 18 18 18],[1:8 249:256].');

PBCH Transmission and Decoding

Create and apply a channel matrix to the waveform. Receive the transmitted waveforms.

R = 3;
H = dftmtx(max([P R]));
H = H(1:P,1:R);
H = H/norm(H);
rxWaveform = txWaveform*H;

Create channel estimates including beamforming.

1 Functions — Alphabetical List

1-172

 hEstGrid = repmat(permute(H.'*F.',[3 4 1 2]),[240 4]);
 nEst = 0;

Demodulate the received waveform using orthogonal frequency division multiplexing
(OFDM).

 rxGrid = ofdmdemod(rxWaveform,256,[22 18 18 18],0,[1:8 249:256].');

In preparation for PBCH decoding, extract symbols from the received grid and the
channel estimate grid.

[pbchRxSym,pbchHestSym] = nrExtractResources(pbchInd,rxGrid,hEstGrid);
figure;
plot(pbchRxSym,'o:');
title('Received PBCH Constellation');

 nrExtractResources

1-173

Equalize the symbols by performing MMSE equalization on the extracted resources. Plot
the results.

pbchEqSym = nrEqualizeMMSE(pbchRxSym,pbchHestSym,nEst);
figure;
plot(pbchEqSym,'o:');
title('Equalized PBCH Constellation');

Retrieve softbits by performing PBCH decoding on the equalized symbols.

pbchBits = nrPBCHDecode(pbchEqSym,ncellid,v)

pbchBits = 864×1
1010 ×

1 Functions — Alphabetical List

1-174

 -2.0000
 -2.0000
 2.0000
 -2.0000
 -2.0000
 2.0000
 2.0000
 -2.0000
 -2.0000
 -2.0000
 ⋮

Input Arguments
ind — Resource element indices
matrix

Resource element indices, specified as a matrix.

• If 'IndexStyle' is 'index', each column of the matrix contains linear indices for
the corresponding antenna.

• If 'IndexStyle' is 'subscript', ind is a three-column matrix. The matrix rows
correspond to the [subcarrier, symbol, antenna] subscripts based on the number of
subcarriers, OFDM symbols, and antennas, respectively.

The function assumes that the indices are one-based, unless you specify otherwise with
the 'IndexBase' argument.
Data Types: double

grid — Resource array
3-D numeric array (default) | 4-D numeric array

Resource array from which to extract resource elements, specified as one of these values:

• 3-D numeric array of size M-by-N-by-R that corresponds to a received grid — M is the
number of subcarriers, N is the number of OFDM symbols, and R is the number of
receive antennas. The grid is created after OFDM demodulation.

• A 4-D numeric array of size M-by-N-by-R-by-P that corresponds to a channel estimation
grid — P is the number of antenna ports. The grid is created after channel estimation.

 nrExtractResources

1-175

Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
nrExtractResources(ind,grid,'ExtractionMethod','direct','IndexBase',
'0based') specifies direct extraction method with zero-based indexing.

IndexStyle — Resource element indexing form
'index' (default) | 'subscript'

Resource element indexing form, specified as the comma-separated pair consisting of
'IndexStyle' and one of these values:

• 'index' — The indices are in linear index form.
• 'subscript' — The indices are in [subcarrier, symbol, antenna] subscript row form.

Data Types: char | string

IndexBase — Resource element indexing base
'1based' (default) | '0based'

Resource element indexing base, specified as the comma-separated pair consisting of
'IndexBase' and one of these values:

• '1based' — The index counting starts from one.
• '0based' — The index counting starts from zero.

Data Types: char | string

ExtractionMethod — Resource element extraction method
'allplanes' (default) | 'direct'

Resource element extraction method, specified as the comma-separated pair consisting of
'ExtractionMethod' and 'allplanes' or 'direct'.

1 Functions — Alphabetical List

1-176

• 'allplanes' — The function extracts resource elements from each M-by-N plane
within grid. The function uses indices that address unique subcarrier and symbol
locations over all planes of the indexed resource array. See “All-Planes Extraction
Method (Default)” on page 1-179.

• 'direct' — The function extracts resource elements from each M-by-N plane (for a
3-D grid) or M-by-N-by-R array (for a 4-D grid). The function uses indices that
address the corresponding plane of the indexed resource array directly. See “Direct
Extraction Method” on page 1-180.

For more details on the resource extraction process, see “Algorithms” on page 1-178.
Data Types: string | char

Output Arguments
re — Extracted resource elements
column vector | numeric array

Extracted resource elements, returned as a column vector, or a numeric array.

When 'ExtractionMethod' is set to 'allplanes', the size of re is NRE-by-R-by-P,
where:

• NRE is the number of resource elements extracted from each M-by-N plane of grid.
• R number of receive antennas.
• P is the number of planes.

When 'ExtractionMethod' is set to 'direct', the size of re depends on the number
of indices addressing each plane of the indexed resource grid.

• If the number of indices addressing each plane is the same, then re is of size NRE-by-
R-by-P.

• If the number of indices addressing each plane is different, then re is a column vector
containing all extracted resource elements.

reind — Indices of extracted resource elements
numeric array

 nrExtractResources

1-177

Indices of extracted resource elements within grid, returned as numeric array. reind is
the same size as the extracted resource elements array re. The reind output inherits the
indexing style and index base from ind.

Algorithms

Resource Element Indices
Typically, channel or signal specific functions generate resource element indices to map
the channel or signal symbols to a resource grid. The indices address resource elements
in an M-by-N-by-P array. M is the number of subcarriers, N is the number of OFDM
symbols, and P is the number of antenna ports.

For example, the following diagram highlights resource elements of a 4-by-4-by-2
resource array. The resource element indices are in one-based linear indexing form. The
number of the antenna ports is two (P = 2).

1 Functions — Alphabetical List

1-178

All-Planes Extraction Method (Default)
To use this method, set 'ExtractionMethod' to 'allplanes'. This method extracts
resource elements from each M-by-N plane within grid. The indices address unique
subcarrier and symbol locations over all the planes of the indexed resource array. The
diagram highlights the indices used to extract resource elements from a resource grid
with P = 2.

The following diagrams illustrate the resource element extraction from a 3-D received
grid, where the number of receive antennas R = 3. Resource elements are extracted from
the grid at the symbol and subcarrier locations.

 nrExtractResources

1-179

The following diagram shows the extraction process for a 4-D channel estimate grid. The
number of receive antennas R = 3 and the number of antenna ports P = 2. The 4-D
resource grid consists of P M-by-N-by-R arrays, each associated with an antenna port.
Resource elements are extracted from all planes within these arrays.

Direct Extraction Method
To use this method, set 'ExtractionMethod' to 'direct'. This method extracts
resource elements from grid assuming that the third and fourth dimensions of the grid
represent the same property as the planes of the indexed resource array such as antenna
ports, layers, transmit antennas. Therefore the function extracts only the resource
elements relevant to each plane of the indexed resource grid.

• For a 3-D grid, the direct method extracts elements from each M-by-N plane of grid
using indices addressing the same plane of the indexed resource array. This method is
the same as the standard MATLAB® operation re = grid(ind). Therefore, reind =
ind.

• For a 4-D grid, the direct method extracts elements from each M-by-N-by-R array of
grid by using indices addressing the same plane of the indexed resource array. The

1 Functions — Alphabetical List

1-180

function assumes that the property represented by the planes of the indexed resource
array is the same as the fourth dimension of grid.

The following diagram shows the extraction process for a 4-D channel estimate grid. The
number of receive antennas R = 3 and the number of antenna ports P = 2. The 4-D
resource grid consists of P number of M-by-N-by-R arrays, each associated with an
antenna port. The indices corresponding to each individual antenna port in the indexed
resource array are used to extract resource elements from each of these arrays.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 nrExtractResources

1-181

See Also
Functions
nrEqualizeMMSE | nrPBCHDMRSIndices | nrPBCHIndices | nrPSSIndices |
nrSSSIndices

Introduced in R2018b

1 Functions — Alphabetical List

1-182

info
Get characteristic information about link-level MIMO fading channel

Syntax
channelInfo = info(channel)

Description
channelInfo = info(channel) returns characteristic information about the link-level
multi-input multi-output (MIMO) fading channel channel.

Examples

Get Characteristic Information About TDL Fading Channel

Create an nrTDLChannel System object.

tdl = nrTDLChannel;

To get characteristic information about the channel, call the info function on the object.

channelInfo = info(tdl)

channelInfo = struct with fields:
 ChannelFilterDelay: 7
 PathDelays: [1x23 double]
 AveragePathGains: [1x23 double]
 KFactorFirstTap: -Inf
 NumTransmitAntennas: 1
 NumReceiveAntennas: 2
 SpatialCorrelationMatrix: [2x2 double]

 info

1-183

Input Arguments
channel — MIMO fading channel
nrCDLChannel | nrTDLChannel

MIMO fading channel, specified as an nrCDLChannel or nrTDLChannel System
object™. The objects implement the link-level MIMO fading channels specified in TR
38.901 Section 7.7.1 and Section 7.7.2, respectively.

Output Arguments
channelInfo — Characteristic information of channel model
structure

Characteristic information of channel model, returned as a structure. The fields of the
structure depend on the input channel.

• If channel is an nrCDLChannel System object, the channelInfo structure has
these fields.

Parameter Field Value Description
PathDelays Numeric row vector Delays of discrete channel

paths for each cluster in
seconds, returned as a numeric
row vector. These values
include the effects of
DelaySpread scaling and
KFactorScaling (when
enabled).

ClusterTypes Cell array of character vectors Type of each cluster in the
delay profile, returned as a cell
array of character vectors.
Cluster types can be 'LOS',
'SubclusteredNLOS', or
'NLOS'.

1 Functions — Alphabetical List

1-184

Parameter Field Value Description
AveragePathGains Numeric row vector Average path gains of the

discrete path or clusters in dB,
returned as a numeric row
vector. These values include
the effect of KFactorScaling
scaling (when enabled).

AnglesAoD Numeric row vector Azimuth of departure angles of
the clusters in degrees,
returned as a numeric row
vector. These values include
the effect of angle scaling if
enabled, see the
AngleSpreads property.

AnglesAoA Numeric row vector Azimuth of arrival angles of the
clusters in degrees, returned
as a numeric row vector. These
values include the effect of
angle scaling if enabled, see
the AngleSpreads property.

AnglesZoD Numeric row vector Zenith of departure angles of
the clusters in degrees,
returned as a numeric row
vector. These values include
the effect of angle scaling if
enabled, see the
AngleSpreads property.

AnglesZoA Numeric row vector Zenith of arrival angles of the
clusters in degrees, returned
as a numeric row vector. These
values include the effect of
angle scaling if enabled, see
the AngleSpreads property.

 info

1-185

Parameter Field Value Description
KFactorFirstCluster Numeric scalar K-factor of first cluster of delay

profile in dB, returned as a
numeric scalar. If the first
cluster of the delay profile
follows a Laplacian instead of a
Rician distribution,
KFactorFirstCluster is -
Inf.

NumTransmitAntennas Numeric scalar Number of transmit antennas,
returned as a numeric scalar.

NumReceiveAntennas Numeric scalar Number of receive antennas,
returned as a numeric scalar.

ChannelFilterDelay Numeric scalar Channel filter delay in samples,
returned as a numeric scalar.

Note

• The step of splitting the strongest clusters into subclusters, described in TR 38.901
Section 7.5, requires sorting of the clusters by their average power. If the
NumStrongestClusters property is nonzero (applies only when DelayProfile
is set to 'Custom'), the fields of the information structure are sorted by average
power. That is, the AveragePathGains, ClusterTypes, PathDelays,
AnglesAoD, AnglesAoA, AnglesZoD, and AnglesZoA fields are presented in
descending order of the average gain.

• If the HasLOSCluster property is set to true, the NLOS (Laplacian) part of that
cluster and the LOS cluster are not necessarily next to each other. However, the
KFactorFirstCluster field still indicates the appropriate K-factor.

• If channel is an nrTDLChannel System object, the channelInfo structure has the
following fields.

Parameter Field Value Description
ChannelFilterDelay Numeric scalar Channel filter delay in samples,

returned as a numeric scalar.

1 Functions — Alphabetical List

1-186

Parameter Field Value Description
AveragePathGains Numeric row vector Average path gains of the

discrete paths in dB, returned
as a numeric row vector. These
values include the effect of
KFactorScaling (when
enabled).

PathDelays Numeric row vector Delays of discrete channel
paths in seconds, returned as a
numeric row vector. These
values include the effects of
DelaySpread scaling and
KFactorScaling (when
enabled).

KFactorFirstTap Numeric scalar K-factor of first tap of delay
profile in dB, returned as a
numeric scalar. If the first tap
of the delay profile follows a
Rayleigh instead of a Rician
distribution,
KFactorFirstTap is -Inf.

NumTransmitAntennas Numeric scalar Number of transmit antennas,
returned as a numeric scalar.

NumReceiveAntennas Numeric scalar Number of receive antennas,
returned as a numeric scalar.

SpacialCorrelationMatrix Numeric matrix Combined correlation matrix
or 3-D array, returned as a
numeric matrix.

References
[1] 3GPP TR 38.901. “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd

Generation Partnership Project; Technical Specification Group Radio Access
Network.

 info

1-187

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
System Objects
nrCDLChannel | nrTDLChannel

Introduced in R2018b

1 Functions — Alphabetical List

1-188

getPathFilters
Get path filter impulse response for link-level MIMO fading channel

Syntax
pathFilters = getPathFilters(channel)

Description
pathFilters = getPathFilters(channel) returns path filter impulse responses for
the link-level multi-input multi-output (MIMO) fading channel channel. Use
pathFilters together with the pathGains output argument returned by the channel
object to reconstruct a perfect channel estimate.

Examples

Reconstruct Channel Impulse Response Using CDL Channel Path Filters

Reconstruct the channel impulse response and perform timing offset estimation using
path filters of a Clustered Delay Line (CDL) channel model with delay profile CDL-D from
TR 38.901 Section 7.7.1.

Define the channel configuration structure using an nrCDLChannel System object. Use
delay profile CDL-D, a delay spread of 10 ns, and UT velocity of 15 km/h:

v = 15.0; % UT velocity in km/h
fc = 4e9; % carrier frequency in Hz
c = physconst('lightspeed'); % speed of light in m/s
fd = (v*1000/3600)/c*fc; % UT max Doppler frequency in Hz

cdl = nrCDLChannel;
cdl.DelayProfile = 'CDL-D';
cdl.DelaySpread = 10e-9;
cdl.CarrierFrequency = fc;
cdl.MaximumDopplerShift = fd;

 getPathFilters

1-189

Configure the transmit array as [M N P Mg Ng] = [2 2 2 1 1], representing 1 panel
(Mg=1, Ng=1) with a 2-by-2 antenna array (M=2, N=2) and P=2 polarization angles.
Configure the receive antenna array as [M N P Mg Ng] = [1 1 2 1 1], representing a
single pair of cross-polarized co-located antennas.

cdl.TransmitAntennaArray.Size = [2 2 2 1 1];
cdl.ReceiveAntennaArray.Size = [1 1 2 1 1];

Create a random waveform of 1 subframe duration with 8 antennas.

SR = 15.36e6;
T = SR * 1e-3;
cdl.SampleRate = SR;
cdlinfo = info(cdl);
Nt = cdlinfo.NumTransmitAntennas;

txWaveform = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel.

[rxWaveform,pathGains] = cdl(txWaveform);

Obtain the path filters used in channel filtering.

pathFilters = getPathFilters(cdl);

Perform timing offset estimation using nrPerfectTimingEstmate.

[offset,mag] = nrPerfectTimingEstimate(pathGains,pathFilters);

Plot the magnitude of the channel impulse response.

[Nh,Nr] = size(mag);
plot(0:(Nh-1),mag,'o:');
hold on;
plot([offset offset],[0 max(mag(:))*1.25],'k:','LineWidth',2);
axis([0 Nh-1 0 max(mag(:))*1.25]);
legends = "|h|, antenna " + num2cell(1:Nr);
legend([legends "Timing offset estimate"]);
ylabel('|h|');
xlabel('Channel impulse response samples');

1 Functions — Alphabetical List

1-190

Input Arguments
channel — MIMO fading channel
nrCDLChannel | nrTDLChannel

MIMO fading channel, specified as an nrCDLChannel or nrTDLChannel System object.
The objects implement the link-level MIMO fading channels specified in TR 38.901
Section 7.7.1 and Section 7.7.2, respectively.

 getPathFilters

1-191

Output Arguments
pathFilters — Path filter impulse response
Nh-by-Np real matrix

Path filter impulse response, returned as an Nh-by-Np real matrix, where:

• Nh is the number of impulse response samples.
• Np is the number of paths.

Each column of the matrix contains the filter impulse response for each path of the delay
profile.
Data Types: double

References
[1] 3GPP TR 38.901. “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd

Generation Partnership Project; Technical Specification Group Radio Access
Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
System Objects
nrCDLChannel | nrTDLChannel

Introduced in R2018b

1 Functions — Alphabetical List

1-192

System Objects — Alphabetical List

2

nrCDLChannel System object

Send signal through CDL channel model

Description
The nrCDLChannel System object sends an input signal through a clustered delay line
(CDL) multi-input multi-output (MIMO) link-level fading channel to obtain the channel-
impaired signal. The object implements the following aspects of TR 38.901 [1]:

• Section 7.7.1: CDL models
• Section 7.7.3: Scaling of delays
• Section 7.7.5.1: Scaling of angles
• Section 7.7.6: K-factor for LOS channel models

To send a signal through the CDL MIMO channel model:

1 Create the nrCDLChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
cdl = nrCDLChannel
cdl = nrCDLChannel(Name,Value)

Description
cdl = nrCDLChannel creates a CDL MIMO channel System object.

2 System Objects — Alphabetical List

2-2

cdl = nrCDLChannel(Name,Value) creates the object with properties set by using
one or more name-value pairs. Enclose the property name inside quotes, followed by the
specified value. Unspecified properties take default values.
Example: cdl = nrCDLChannel('DelayProfile','CDL-D','DelaySpread',2e-6)
creates the channel object with CDL-D delay profile and 2 microseconds delay spread.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

DelayProfile — CDL delay profile
'CDL-A' (default) | 'CDL-B' | 'CDL-C' | 'CDL-D' | 'CDL-E' | 'Custom'

CDL delay profile, specified as 'CDL-A', 'CDL-B', 'CDL-C', 'CDL-D', 'CDL-E', or
'Custom'. See TR 38.901 Section 7.7.1, Tables 7.7.1-1 to 7.7.1-5.

When you set this property to 'Custom', configure the delay profile using properties
PathDelays, AveragePathGains, AnglesAoA, AnglesAoD, AnglesZoA, AnglesZoD,
HasLOSCluster, KFactorFirstCluster, AngleSpreads, XPR, and
NumStrongestClusters.
Data Types: char | string

PathDelays — Discrete path delays in seconds
0.0 (default) | numeric scalar | row vector

Discrete path delays in seconds, specified as a numeric scalar or row vector.
AveragePathGains and PathDelays must have the same size.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: double

 nrCDLChannel System object

2-3

AveragePathGains — Average path gains in dB
0.0 (default) | numeric scalar | row vector

Average path gains in dB, specified as a numeric scalar or row vector.
AveragePathGains and PathDelays must have the same size.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: double

AnglesAoA — Azimuth of arrival angle in degrees
0.0 (default) | numeric scalar | row vector

Azimuth of arrival angle in degrees, specified as a numeric scalar or row vector. The
vector elements specify the angles for each cluster.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: double

AnglesAoD — Azimuth of departure angle in degrees
0.0 (default) | numeric scalar | row vector

Azimuth of departure angle in degrees, specified as a numeric scalar or row vector. The
vector elements specify the angles for each cluster.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: double

AnglesZoA — Zenith of arrival angle in degrees
0.0 (default) | numeric scalar | row vector

Zenith of arrival angle in degrees, specified as a numeric scalar or row vector. The vector
elements specify the angles for each cluster.

Dependencies

To enable this property, set DelayProfile to 'Custom'.

2 System Objects — Alphabetical List

2-4

Data Types: double

AnglesZoD — Zenith of departure angle in degrees
0.0 (default) | numeric scalar | row vector

Zenith of departure angle in degrees, specified as a numeric scalar or row vector. The
vector elements specify the angles for each cluster.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: double

HasLOSCluster — Line of sight cluster of the delay profile
false (default) | true

Line of sight (LOS) cluster of the delay profile, specified as false or true. The
PathDelays, AveragePathGains, AnglesAoA, AnglesAoD, AnglesZoA, and
AnglesZoD properties define the delay profile. To enable the LOS cluster of the delay
profile, set HasLOSCluster to true.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: logical

KFactorFirstCluster — K-factor in first cluster of delay profile in dB
13.3 (default) | numeric scalar

K-factor in the first cluster of the delay profile in dB, specified as a numeric scalar. The
default value corresponds to the K-factor in the first cluster of CDL-D as defined in TR
38.901 Section 7.7.1, Table 7.7.1-4.

Dependencies

To enable this property, set DelayProfile to 'Custom' and HasLOSCluster to true.
Data Types: double

AngleScaling — Apply scaling of angles
false (default) | true

 nrCDLChannel System object

2-5

Apply scaling of angles, specified as false or true according to TR 38.901 Section
7.7.5.1. When set to true, the AngleSpreads and MeanAngles properties define the
scaling of angles.
Dependencies

To enable this property, set DelayProfile to 'CDL-A', 'CDL-B', 'CDL-C', 'CDL-D',
or 'CDL-E'. This property does not apply for custom delay profile.
Data Types: logical

AngleSpreads — Desired scaled angle spreads in degrees
[5.0 11.0 3.0 3.0] (default) | four-element row vector

Desired scaled angle spreads in degrees, specified as a four-element row vector in one of
these forms:

• [CASD CASA CZSD CZSA] row vector for scaling ray offset angles as described in TR 38.901
Section 7.7.1, Step1, where:

• CASD is the cluster-wise azimuth spread of departure angles
• CASA is the cluster-wise azimuth spread of arrival angles
• CZSD is the cluster-wise zenith spread of departure angles
• CZSA is the cluster-wise zenith spread of arrival angles

To use this form, set DelayProfile to 'Custom'.
• [ASD ASA ZSD ZSA] row vector for angle scaling, ASdesired, as described in TR 38.901

Section 7.7.5.1, where:

• ASD is the azimuth spread of departure angles after scaling
• ASA is the azimuth spread of arrival angles after scaling
• ZSD is the zenith spread of departure angles after scaling
• ZSA is the zenith spread of arrival angles after scaling

To use this form, set AngleScaling to true.

The default value corresponds to the default cluster-wise angle spreads of CDL-A as
defined in TR 38.901 Section 7.7.1 Table 7.7.1-1.
Dependencies

To enable this property, set DelayProfile to 'Custom' or AngleScaling to true.

2 System Objects — Alphabetical List

2-6

Data Types: double

MeanAngles — Desired mean angles in degrees
[0.0 0.0 0.0 0.0] (default) | four-element row vector

Desired mean angles in degrees, specified as a four-element row vector of the form [AoD
AoA ZoD ZoA].

• AoD is the mean azimuth spread of departure angles after scaling
• AoA is the mean azimuth spread of arrival angles after scaling
• ZoD is the mean zenith spread of departure angles after scaling
• ZoA is the mean zenith spread of arrival angles after scaling

Use this vector for angle scaling as described in TR 38.901 Section 7.7.5.1

Dependencies

To enable this property, set AngleScaling to true.
Data Types: double

XPR — Cross-polarization power ratio in dB
10.0 (default) | numeric scalar

Cross-polarization power ratio in dB, specified as a numeric scalar. The default value
corresponds to the cluster-wise cross-polarization power ratio of CDL-A as defined in TR
38.901 Section 7.7.1, Table 7.7.1-1.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: double

DelaySpread — Desired RMS delay spread in seconds
30e-9 (default) | numeric scalar

Desired root mean square (RMS) delay spread in seconds, specified as a numeric scalar.
For examples of desired RMS delay spreads, DSdesired, see TR 38.901 Section 7.7.3 and
Tables 7.7.3-1 and 7.7.3-2.

 nrCDLChannel System object

2-7

Dependencies

To enable this property, set DelayProfile to 'CDL-A', 'CDL-B', 'CDL-C', 'CDL-D',
or 'CDL-E'. This property does not apply for custom delay profile.
Data Types: double

CarrierFrequency — Carrier frequency in Hz
4e9 (default) | numeric scalar

Carrier frequency in Hz, specified as a numeric scalar.
Data Types: double

MaximumDopplerShift — Maximum Doppler shift in Hz
5 (default) | nonnegative numeric scalar

Maximum Doppler shift in Hz, specified as a nonnegative numeric scalar. This property
applies to all channel paths. When the maximum Doppler shift is set to 0, the channel
remains static for the entire input. To generate a new channel realization, reset the object
by calling the reset function.
Data Types: double

UTDirectionOfTravel — User terminal direction of travel in degrees
[0; 90] (default) | two-element column vector

User terminal (UT) direction of travel in degrees, specified as a two-element column
vector. The vector elements specify the azimuth and the elevation components [azimuth;
elevation].
Data Types: double

KFactorScaling — K-factor scaling
false (default) | true

K-factor scaling, specified as false or true. When set to true, the KFactor property
specifies the desired K-factor and the object applies K-factor scaling as described in TR
38.901 Section 7.7.6.

Note K-factor scaling modifies both the path delays and path powers.

2 System Objects — Alphabetical List

2-8

Dependencies

To enable this property, set DelayProfile to 'CDL-D' or 'CDL-E'.
Data Types: double

KFactor — Desired K-factor for scaling in dB
9.0 (default) | numeric scalar

Desired K-factor for scaling in dB, specified as a numeric scalar. For typical K-factor
values, see TR 38.901 Section 7.7.6 and Table 7.5-6.

Note

• K-factor scaling modifies both the path delays and path powers.
• K-factor applies to the overall delay profile. Specifically, the K-factor after the

scaling is Kmodel as described in TR 38.901 Section 7.7.6. Kmodel is the ratio of the
power of the first path LOS to the total power of all the Laplacian clusters, including
the Laplacian part of the first cluster.

Dependencies

To enable this property, set KFactorScaling to true.
Data Types: double

SampleRate — Sample rate of input signal in Hz
30.72e6 (default) | positive numeric scalar

Sample rate of input signal in Hz, specified as a positive numeric scalar.
Data Types: double

TransmitAntennaArray — Transmit antenna array characteristics
structure

Transmit antenna array characteristics, specified as a structure that contains these fields:

 nrCDLChannel System object

2-9

Parameter Field Values Description
Size [2 2 2 1 1] (default),

row vector

Size of antenna array [M N P Mg Ng], where:

• M and N are the number of rows and
columns in the antenna array.

• P is the number of polarizations (1 or 2).
• Mg and Ng are the number of row and

column array panels, respectively.

The antenna array elements are mapped
panel-wise to the waveform channels
(columns) in the order that a 5-D array of size
M-by-N-by-P-by-Mg-by-Ng is linearly indexed
across the first dimension to the last.

For example, an antenna array of size [4 8
2 2 2] has the first M = 4 channels mapped
to the first column of the first polarization
angle of the first panel. The next M = 4
antennas are mapped to the next column, and
so on. Following this pattern, the first M × N
= 32 channels are mapped to the first
polarization angle of the complete first panel.
Similarly, the remaining 32 channels are
mapped to the second polarization angle of
the first panel. Subsequent sets of M × N × P
= 64 channels are mapped to consecutive
panels, taking panel rows first, then panel
columns.

ElementSpacing [0.5 0.5 1.0 1.0]
(default),

row vector

Element spacing, in wavelengths, specified as
a row vector of the form [λv λh dgv dgh]. The
vector elements represent the vertical and
horizontal element spacing and the vertical
and horizontal panel spacing, respectively.

PolarizationAngles [45 -45] (default),

row vector

Polarization angles in degrees, specified as a
row vector of the form [θ ρ]. Polarization
angles apply only when the number of
polarizations is 2.

2 System Objects — Alphabetical List

2-10

Parameter Field Values Description
Orientation [0; 0; 0](default),

column vector

Array orientation in degrees, specified as a
column vector of the form [α; β; γ]. The
vector elements specify the bearing, downtilt,
and slant, respectively.

Element '38.901' (default),

'isotropic'

Antenna element radiation pattern as
described in TR 38.901 Section 7.3. (Note
that TR 38.901 superseded TR 38.900.)

PolarizationModel 'Model-2' (default),

'Model-1'

Model that determines the radiation field
patterns based on a defined radiation power
pattern. See TR 38.901 Section 7.3.2.

Data Types: struct

ReceiveAntennaArray — Receive antenna array characteristics
structure

Receive antenna array characteristics, specified as a structure that contains these fields:

 nrCDLChannel System object

2-11

Parameter Field Values Description
Size [1 1 2 1 1] (default),

row vector

Size of antenna array [M N P Mg Ng], where:

• M and N are the number of rows and
columns in the antenna array.

• P is the number of polarizations (1 or 2).
• Mg and Ng are the number of row and

column array panels, respectively.

The antenna array elements are mapped
panel-wise to the waveform channels
(columns) in the order that a 5-D array of size
M-by-N-by-P-by-Mg-by-Ng is linearly indexed
across the first dimension to the last.

For example, an antenna array of size [4 8
2 2 2] has the first M = 4 channels mapped
to the first column of the first polarization
angle of the first panel. The next M = 4
antennas are mapped to the next column, and
so on. Following this pattern, the first M × N
= 32 channels are mapped to the first
polarization angle of the complete first panel.
Similarly, the remaining 32 channels are
mapped to the second polarization angle of
the first panel. Subsequent sets of M × N × P
= 64 channels are mapped to consecutive
panels, taking panel rows first, then panel
columns.

ElementSpacing [0.5 0.5 0.5 0.5]
(default),

row vector

Element spacing in wavelengths, specified as
a row vector of the form [λv λh dgv dgh]. The
vector values represent the vertical and
horizontal element spacing, and the vertical
and horizontal panel spacing, respectively.

PolarizationAngles [0 90] (default),

row vector

Polarization angles in degrees, specified as a
row vector of the form [θ ρ]. Polarization
angles apply only when the number of
polarizations is 2.

2 System Objects — Alphabetical List

2-12

Parameter Field Values Description
Orientation [0; 0; 0](default),

column vector

Array orientation in degrees, specified as a
column vector of the form [α; β; γ]. The
vector elements specify the bearing, downtilt,
and slant, respectively.

Element 'isotropic' (default),

'38.901'

Antenna element radiation pattern as
described in TR 38.901 Section 7.3. (Note
that TR 38.901 superseded TR 38.900.)

PolarizationModel 'Model-2' (default),

'Model-1'

Model that determines the radiation field
patterns based on a defined radiation power
pattern. See TR 38.901 Section 7.3.2.

Data Types: structure

SampleDensity — Number of time samples per half wavelength
64 (default) | Inf | numeric scalar

Number of time samples per half wavelength, specified as Inf or a numeric scalar. The
SampleDensity and MaximumDopplerShift properties control the coefficient
generation sampling rate, Fcg, given by

Fcg = MaximumDopplerShift × 2 × SampleDensity.

Setting SampleDensity to Inf assigns Fcg the value of the SampleRate property.
Data Types: double

NormalizePathGains — Normalize path gains
true (default) | false

Normalize path gains, specified as true or false. Use this property to normalize the
fading processes. When this property is set to true, the total power of the path gains,
averaged over time, is 0 dB. When this property is set to false, the path gains are not
normalized. The average powers of the path gains are specified by the selected delay
profile, or if DelayProfile is set to 'Custom', by the AveragePathGains property.
Data Types: logical

InitialTime — Time offset of fading process in seconds
0.0 (default) | numeric scalar

Time offset of fading process in seconds, specified as a numeric scalar.

 nrCDLChannel System object

2-13

Tunable: Yes
Data Types: double

NumStrongestClusters — Number of strongest clusters to split into subclusters
0 (default) | numeric scalar

Number of strongest clusters to split into subclusters, specified as a numeric scalar. See
TR 38.901 Section 7.5, Step 11.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: double

ClusterDelaySpread — Cluster delay spread in seconds
3.90625e-9 (default) | nonnegative scalar

Cluster delay spread in seconds, specified as a nonnegative scalar. Use this property to
specify the delay offset between subclusters for clusters split into subclusters. See TR
38.901 Section 7.5, Step 11.

Dependencies

To enable this property, set DelayProfile to 'Custom' and NumStrongestClusters
to a value greater than zero.
Data Types: double

RandomStream — Source of random number stream
'mt19937ar with seed' (default) | 'Global stream'

Source of random number stream, specified as one of the following:

• 'mt19937ar with seed' — The object uses the mt19937ar algorithm for normally
distributed random number generation. Calling the reset function resets the filters
and reinitializes the random number stream to the value of the Seed property.

• 'Global stream' — The object uses the current global random number stream for
normally distributed random number generation. Calling the reset function resets
only the filters.

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative numeric scalar

2 System Objects — Alphabetical List

2-14

Initial seed of mt19937ar random number stream, specified as a nonnegative numeric
scalar.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'. When calling
the reset function, the seed reinitializes the mt19937ar random number stream.
Data Types: double

ChannelFiltering — Fading channel filtering
true (default) | false

Fading channel filtering, specified as true or false. When this property is set to false,
the following conditions apply:

• The object takes no input signal and returns only the path gains and sample times.
• The SampleDensity property determines when to sample the channel coefficients.
• The NumTimeSamples property controls the duration of the fading process realization

at a sampling rate given by the SampleRate property.

Data Types: logical

NumTimeSamples — Number of time samples
30720 (default) | positive integer

Number of time samples, specified as a positive integer. Use this property to set the
duration of the fading process realization.

Tunable: Yes

Dependencies

To enable this property, set ChannelFiltering to false.
Data Types: double

NormalizeChannelOutputs — Normalize channel outputs by the number of
receive antennas
true (default) | false

Normalize channel outputs by the number of receive antennas, specified as true or
false.

 nrCDLChannel System object

2-15

Dependencies

To enable this property, set ChannelFiltering to true.
Data Types: logical

Usage

Syntax
signalOut = cdl(signalIn)
[signalOut,pathGains] = cdl(signalIn)
[signalOut,pathGains,sampleTimes] = cdl(signalIn)

[pathGains,sampleTimes] = cdl()

Description
signalOut = cdl(signalIn) sends the input signal through a CDL MIMO fading
channel and returns the channel-impaired signal.

[signalOut,pathGains] = cdl(signalIn) also returns the MIMO channel path
gains of the underlying fading process.

[signalOut,pathGains,sampleTimes] = cdl(signalIn) also returns the sample
times of the channel snapshots of pathGains (first-dimension elements).

[pathGains,sampleTimes] = cdl() returns only the path gains and the sample
times. In this case, the NumTimeSamples property determines the duration of the fading
process. The object acts as a source of the path gains and sample times without filtering
an input signal.

To use this syntax, you must set the ChannelFiltering property of cdl to false.

Input Arguments
signalIn — Input signal
complex scalar | vector | NS-by-NT matrix

2 System Objects — Alphabetical List

2-16

Input signal, specified as a complex scalar, vector, or NS-by-NT matrix, where:

• NS is the number of samples.
• NT is the number of transmit antennas.

Data Types: single | double
Complex Number Support: Yes

Output Arguments
signalOut — Output signal
complex scalar | vector | NS-by-NR matrix

Output signal, returned as a complex scalar, vector, or NS-by-NR matrix, where:

• NS is the number of samples.
• NR is the number of receive antennas.

The output signal data type is of the same precision as the input signal data type.
Data Types: single | double
Complex Number Support: Yes

pathGains — MIMO channel path gains of fading process
NCS-by-NP-by-NT-by-NR complex matrix

MIMO channel path gains of the fading process, returned as an NCS-by-NP-by-NT-by-NR
complex matrix, where:

• NCS is the number of channel snapshots, controlled by the SampleDensity property
of cdl.

• NP is the number of paths, specified by the size of the PathDelays property of cdl.
• NT is the number of transmit antennas.
• NR is the number of receive antennas.

The path gains data type is of the same precision as the input signal data type.
Data Types: single | double
Complex Number Support: Yes

sampleTimes — Sample times of channel snapshots
NCS-by-1 column vector

 nrCDLChannel System object

2-17

Sample times of channel snapshots, returned as an NCS-by-1 column vector, where NCS is
the number of channel snapshots controlled by the SampleDensity property.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to nrCDLChannel
info Get characteristic information about link-level MIMO fading channel
getPathFilters Get path filter impulse response for link-level MIMO fading channel

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Transmission over Channel Model with Delay Profile CDL-D

Transmit waveform through a Clustered Delay Line (CDL) channel model with delay
profile CDL-D from TR 38.901 Section 7.7.1.

Define the channel configuration structure using an nrCDLChannel System object. Use
delay profile CDL-D, a delay spread of 10 ns, and UT velocity of 15 km/h:

v = 15.0; % UT velocity in km/h
fc = 4e9; % carrier frequency in Hz
c = physconst('lightspeed'); % speed of light in m/s

2 System Objects — Alphabetical List

2-18

fd = (v*1000/3600)/c*fc; % UT max Doppler frequency in Hz

cdl = nrCDLChannel;
cdl.DelayProfile = 'CDL-D';
cdl.DelaySpread = 10e-9;
cdl.CarrierFrequency = fc;
cdl.MaximumDopplerShift = fd;

Configure the transmit array as [M N P Mg Ng] = [2 2 2 1 1], representing 1 panel
(Mg=1, Ng=1) with a 2-by-2 antenna array (M=2, N=2) and P=2 polarization angles.
Configure the receive antenna array as [M N P Mg Ng] = [1 1 2 1 1], representing a
single pair of cross-polarized co-located antennas.

cdl.TransmitAntennaArray.Size = [2 2 2 1 1];
cdl.ReceiveAntennaArray.Size = [1 1 2 1 1];

Create a random waveform of 1 subframe duration with 8 antennas.

SR = 15.36e6;
T = SR * 1e-3;
cdl.SampleRate = SR;
cdlinfo = info(cdl);
Nt = cdlinfo.NumTransmitAntennas;

txWaveform = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel.

rxWaveform = cdl(txWaveform);

Plot Channel Transmission Properties with SISO and Delay Profile CDL-B

Plot channel output and path gain snapshots for various sample density values while
using an nrCDLChannel System object.

Configure a channel with delay profile CDL-B from TR 38.901 Section 7.7.1. Set the
maximum Doppler shift to 300 Hz and the channel sampling rate to 10 kHz.

cdl = nrCDLChannel;
cdl.DelayProfile = 'CDL-B';
cdl.MaximumDopplerShift = 300.0;

 nrCDLChannel System object

2-19

cdl.SampleRate = 10e3;
cdl.Seed = 19;

Configure transmit and receive antenna arrays for single-input/single-output (SISO)
operation.

cdl.TransmitAntennaArray.Size = [1 1 1 1 1];
cdl.ReceiveAntennaArray.Size = [1 1 1 1 1];

Create an input waveform with a length of 40 samples.

T = 40;
in = ones(T,1);

Plot the step response of the channel (displayed as lines) and the corresponding path gain
snapshots (displayed circles) for various values of the SampleDensity property. The
sample density property controls how often the channel snapshots are taken relative to
the Doppler frequency.

• When SampleDensity = Inf, a channel snapshot is taken for every input sample.
• When SampleDensity = X, a channel snapshot is taken at a rate of Fcs =

2*X*MaximumDopplerShift.

The nrCDLChannel object applies the channel snapshots to the input waveform by means
of zero-order hold interpolation. The object takes an extra snapshot beyond the end of the
input. Some of the final output samples use this extra value to minimize the interpolation
error. The channel output contains a transient (and a delay) due to the filters that
implement the path delays.

s = [Inf 5 2]; % sample densities

legends = {};
figure; hold on;
SR = cdl.SampleRate;
for i = 1:length(s)

 % call channel with chosen sample density
 release(cdl); cdl.SampleDensity = s(i);
 [out,pathgains,sampletimes] = cdl(in);
 chInfo = info(cdl); tau = chInfo.ChannelFilterDelay;

 % plot channel output against time
 t = cdl.InitialTime + ((0:(T-1)) - tau).' / SR;
 h = plot(t,abs(out),'o-'); h.MarkerSize = 2; h.LineWidth = 1.5;

2 System Objects — Alphabetical List

2-20

 desc = ['Sample Density=' num2str(s(i))];
 legends = [legends ['Output, ' desc]];
 disp([desc ', Ncs=' num2str(length(sampletimes))]);

 % plot path gains against sample times
 h2 = plot(sampletimes-tau/SR,abs(sum(pathgains,2)),'o');
 h2.Color = h.Color; h2.MarkerFaceColor = h.Color;
 legends = [legends ['path gains, ' desc]];
end

Sample Density=Inf, Ncs=40

Sample Density=5, Ncs=13

Sample Density=2, Ncs=6

xlabel('Time (s)');
title('Channel Output and Path Gains versus Sample Density');
ylabel('Channel Magnitude');
legend(legends,'Location','NorthWest');

 nrCDLChannel System object

2-21

References
[1] 3GPP TR 38.901. “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd

Generation Partnership Project; Technical Specification Group Radio Access
Network.

2 System Objects — Alphabetical List

2-22

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
nrPerfectChannelEstimate | nrPerfectTimingEstimate

System Objects
comm.MIMOChannel | nrTDLChannel

Introduced in R2018b

 nrCDLChannel System object

2-23

nrTDLChannel System object

Send signal through TDL channel model

Description
The nrTDLChannel System object sends an input signal through a tapped delay line
(TDL) multi-input multi-output (MIMO) link-level fading channel to obtain the channel-
impaired signal. The object implements the following aspects of TR 38.901 [1]:

• Section 7.7.2: TDL models
• Section 7.7.3: Scaling of delays
• Section 7.7.5.2 TDL extension: Applying a correlation matrix
• Section 7.7.6: K-factor for LOS channel models

To send a signal through the TDL MIMO channel model:

1 Create the nrTDLChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tdl = nrTDLChannel
tdl = nrTDLChannel(Name,Value)

Description
tdl = nrTDLChannel creates a TDL MIMO channel System object.

2 System Objects — Alphabetical List

2-24

tdl = nrTDLChannel(Name,Value) creates the object with properties set by using
one or more name-value pairs. Enclose the property name inside quotes, followed by the
specified value. Unspecified properties take default values.
Example: tdl = nrTDLChannel('DelayProfile','TDL-D','DelaySpread',2e-6)
creates a TDL channel model with TDL-D delay profile and a 2-microseconds delay
spread.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

DelayProfile — TDL delay profile
'TDL-A' (default) | 'TDL-B' | 'TDL-C' | 'TDL-D' | 'TDL-E' | 'Custom'

TDL delay profile, specified as one of 'TDL-A', 'TDL-B', 'TDL-C', 'TDL-D', 'TDL-E',
or 'Custom'. See TR 38.901 Section 7.7.2, Tables 7.7.2-1 to 7.7.2-5.

When you set this property to 'Custom', configure the delay profile using properties
PathDelays, AveragePathGains, FadingDistribution, and KFactorFirstTap.
Data Types: char | string

PathDelays — Discrete path delays in seconds
0.0 (default) | numeric scalar | row vector

Discrete path delays in seconds, specified as a numeric scalar or row vector.
AveragePathGains and PathDelays must have the same size.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: double

 nrTDLChannel System object

2-25

AveragePathGains — Average path gains in dB
0.0 (default) | numeric scalar | row vector

Average path gains in dB, specified as a numeric scalar or row vector.
AveragePathGains and PathDelays must have the same size.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: double

FadingDistribution — Fading process statistical distribution
'Rayleigh' (default) | 'Rician'

Fading process statistical distribution, specified as 'Rayleigh' or 'Rician'.

Dependencies

To enable this property, set DelayProfile to 'Custom'.
Data Types: char | string

KFactorFirstTap — K-factor of first tap of delay profile in dB
13.3 (default) | numeric scalar

K-factor of first tap of delay profile in dB, specified as a numerical scalar. The default
value corresponds to the K-factor of the first tap of TDL-D as defined in TR 38.901 Section
7.7.2, Table 7.7.2-4.

Dependencies

To enable this property, set DelayProfile to 'Custom' and FadingDistribution to
'Rician'.
Data Types: double

DelaySpread — Desired RMS delay spread in seconds
30e-9 (default) | numeric scalar

Desired root mean square (RMS) delay spread in seconds, specified as a numeric scalar.
For examples of desired RMS delay spreads, DSdesired, see TR 38.901 Section 7.7.3 and
Tables 7.7.3-1 and 7.7.3-2.

2 System Objects — Alphabetical List

2-26

Dependencies

To enable this property, set DelayProfile to 'TDL-A', 'TDL-B', 'TDL-C', 'TDL-D',
or 'TDL-E'. This property does not apply for custom delay profile.
Data Types: double

MaximumDopplerShift — Maximum Doppler shift in Hz
5 (default) | nonnegative numeric scalar

Maximum Doppler shift in Hz, specified as a nonnegative numeric scalar. This property
applies to all channel paths. When the maximum Doppler shift is set to 0, the channel
remains static for the entire input. To generate a new channel realization, reset the object
by calling the reset function.
Data Types: double

KFactorScaling — K-factor scaling
false (default) | true

K-factor scaling, specified as false or true. When set to true, the KFactor property
specifies the desired K-factor, and the object applies K-factor scaling as described in TR
38.901 Section 7.7.6.

Note K-factor scaling modifies both the path delays and path powers.

Dependencies

To enable this property, set DelayProfile to 'TDL-D' or 'TDL-E'.
Data Types: double

KFactor — Desired K-factor for scaling in dB
9.0 (default) | numeric scalar

Desired K-factor for scaling in dB, specified as a numeric scalar. For typical K-factor
values, see TR 38.901 Section 7.7.6 and Table 7.5-6.

Note

• K-factor scaling modifies both the path delays and path powers.

 nrTDLChannel System object

2-27

• K-factor applies to the overall delay profile. Specifically, the K-factor after the
scaling is Kmodel as described in TR 38.901 Section 7.7.6. Kmodel is the ratio of the
power of the first path LOS to the total power of all the Rayleigh paths, including the
Rayleigh part of the first path.

Dependencies

To enable this property, set KFactorScaling to true.
Data Types: double

SampleRate — Sample rate of input signal in Hz
30.72e6 (default) | positive numeric scalar

Sample rate of input signal in Hz, specified as a positive numeric scalar.
Data Types: double

MIMOCorrelation — Correlation between UE and BS antennas
'Low' (default) | 'Medium' | 'Medium-A' | 'UplinkMedium' | 'High' | 'Custom'

Correlation between user equipment (UE) and base station (BS) antennas, specified as
one of these values:

• 'Low' or 'High' — Applies to both uplink and downlink. 'Low' is equivalent to no
correlation between antennas.

• 'Medium' or 'Medium-A' — For downlink, see TS 36.101 Annex B.2.3.2. For uplink,
see TS 36.104 Annex B.5.2. The TransmissionDirection property controls the
transmission direction.

• 'UplinkMedium' — See TS 36.104, Annex B.5.2.
• 'Custom' — The ReceiveCorrelationMatrix property specifies the correlation

between UE antennas, and the TransmitCorrelationMatrix property specifies the
correlation between BS antennas. See TR 38.901 Section 7.7.5.2.

For more details on correlation between UE and BS antennas, see TS 36.101 [2] and TS
36.104 [3]
Data Types: char | string

Polarization — Antenna polarization arrangement
'Co-Polar' (default) | 'Cross-Polar' | 'Custom'

2 System Objects — Alphabetical List

2-28

Antenna polarization arrangement, specified as 'Co-Polar', 'Cross-Polar',
'Custom'.
Data Types: char | string

TransmissionDirection — Transmission direction
'Downlink' (default) | 'Uplink'

Transmission direction, specified as 'Downlink' or 'Uplink'.
Dependencies

To enable this property, set MIMOCorrelation to 'Low', 'Medium', 'Medium-A',
'UplinkMedium', or 'High'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | positive integer

Number of transmit antennas, specified as a positive integer.
Dependencies

To enable this property, set MIMOCorrelation to 'Low', 'Medium', 'Medium-A',
'UplinkMedium', or 'High', or set both MIMOCorrelation and Polarization to
'Custom'.
Data Types: double

NumReceiveAntennas — Number of receive antennas
2 (default) | positive integer

Number of receive antennas, specified as a positive integer.
Dependencies

To enable this property, set MIMOCorrelation to 'Low', 'Medium', 'Medium-A',
'UplinkMedium', or 'High'.
Data Types: double

TransmitCorrelationMatrix — Spatial correlation of transmitter
[1] (default) | 2-D matrix | 3-D array

Spatial correlation of transmitter, specified as a 2-D matrix or 3-D array.

 nrTDLChannel System object

2-29

• If the channel is frequency-flat (PathDelays is a scalar), specify
TransmitCorrelationMatrix as a 2-D Hermitian matrix of size NT-by-NT. NT is the
number of transmit antennas. The main diagonal elements must be all ones, and the
off-diagonal elements must have a magnitude smaller than or equal to one.

• If the channel is frequency-selective (PathDelays is a row vector of length NP),
specify TransmitCorrelationMatrix as one of these arrays:

• 2-D Hermitian matrix of size NT-by-NT with element properties as previously
described. Each path has the same transmit correlation matrix.

• 3-D array of size NT-by-NT-by-NP, where each submatrix of size NT-by-NT is a
Hermitian matrix with element properties as previously described. Each path has
its own transmit correlation matrix.

Dependencies

To enable this property, set MIMOCorrelation to 'Custom' and Polarization to
either 'Co-Polar' or 'Cross-Polar'.
Data Types: double

ReceiveCorrelationMatrix — Spatial correlation of receiver
[1 0; 0 1] (default) | 2-D matrix | 3-D array

Spatial correlation of receiver, specified as a 2-D matrix or 3-D array.

• If the channel is frequency-flat (PathDelays is a scalar), specify
ReceiveCorrelationMatrix as a 2-D Hermitian matrix of size NR-by-NR. NR is the
number of receive antennas. The main diagonal elements must be all ones, and the off-
diagonal elements must have a magnitude smaller than or equal to one.

• If the channel is frequency-selective (PathDelays is a row vector of length NP),
specify ReceiveCorrelationMatrix as one of these arrays:

• 2-D Hermitian matrix of size NR-by-NR with element properties as previously
described. Each path has the same receive correlation matrix.

• 3-D array of size NR-by-NR-by-NP, where each submatrix of size NR-by-NR is a
Hermitian matrix with element properties as previously described. Each path has
its own receive correlation matrix.

Dependencies

To enable this property, set MIMOCorrelation to 'Custom' and Polarization to
either 'Co-Polar' or 'Cross-Polar'.

2 System Objects — Alphabetical List

2-30

Data Types: double

TransmitPolarizationAngles — Transmit polarization slant angles in degrees
[45 -45] (default) | row vector

Transmit polarization slant angles in degrees, specified as a row vector.

Dependencies

To enable this property, set MIMOCorrelation to 'Custom' and Polarization to
'Cross-Polar'.
Data Types: double

ReceivePolarizationAngles — Receive polarization slant angles in degrees
[90 0] (default) | row vector

Receive polarization slant angles in degrees, specified as a row vector.

Dependencies

To enable this property, set MIMOCorrelation to 'Custom' and Polarization to
'Cross-Polar'.
Data Types: double

XPR — Cross-polarization power ratio in dB
10.0 (default) | numeric scalar | row vector

Cross-polarization power ratio in dB, specified as a numeric scalar or a row vector. This
property corresponds to the ratio between the vertical-to-vertical (PVV) and vertical-to-
horizontal (PVH) polarizations defined for the clustered delay line (CDL) models in TR
38.901 Section 7.7.1.

• If the channel is frequency-flat (PathDelays is a scalar), specify XPR as a scalar.
• If the channel is frequency-selective (PathDelays is a row vector of length NP),

specify XPR as one of these values:

• Scalar — Each path has the same cross-polarization power ratio.
• Row vector of size 1-by-NP — Each path has its own cross-polarization power ratio.

The default value corresponds to the cluster-wise cross-polarization power ratio of CDL-A
as defined in TR 38.901 Section 7.7.1, Table 7.7.1-1.

 nrTDLChannel System object

2-31

Dependencies

To enable this property, set MIMOCorrelation to 'Custom' and Polarization to
'Cross-Polar'.
Data Types: double

SpatialCorrelationMatrix — Combined correlation for channel
[1 0; 0 1] (default) | 2-D matrix | 3-D array

Combined correlation for the channel, specified as 2-D matrix or 3-D array. The matrix
determines the product of the number of transmit antennas (NT) and the number of
receive antennas (NR).

• If the channel is frequency-flat (PathDelays is a scalar), specify
SpatialCorrelationMatrix as a 2-D Hermitian matrix of size (NT ⨉ NR)-by-(NT ⨉
NR).The magnitude of any off-diagonal element must be no larger than the geometric
mean of the two corresponding diagonal elements.

• If the channel is frequency-selective (PathDelays is a row vector of length NP),
specify SpatialCorrelationMatrix as one of these arrays:

• 2-D Hermitian matrix of size (NT ⨉ NR)-by-(NT ⨉ NR) with off-diagonal element
properties as previously described. Each path has the same spatial correlation
matrix.

• 3-D array of size (NT ⨉ NR)-by-(NT ⨉ NR)-by-NP array — where each matrix of size
(NT ⨉ NR)-by-(NT ⨉ NR) is a Hermitian matrix with off-diagonal element properties
as previously described. Each path has its own spatial correlation matrix.

Dependencies

To enable this property, set MIMOCorrelation to 'Custom' and Polarization to
'Custom'.
Data Types: double

NormalizePathGains — Normalize path gains
true (default) | false

Normalize path gains, specified as true or false. Use this property to normalize the
fading processes. When this property is set to true, the total power of the path gains,
averaged over time, is 0 dB. When this property is set to false, the path gains are not
normalized. The average powers of the path gains are specified by the selected delay
profile, or if DelayProfile is set to 'Custom', by the AveragePathGains property.

2 System Objects — Alphabetical List

2-32

Data Types: logical

InitialTime — Time offset of fading process in seconds
0.0 (default) | numeric scalar

Time offset of fading process in seconds, specified as a numeric scalar.

Tunable: Yes
Data Types: double

NumSinusoids — Number of modeling sinusoids
48 (default) | positive integer

Number of modeling sinusoids, specified as a positive integer. These sinusoids model the
fading process.
Data Types: double

RandomStream — Source of random number stream
'mt19937ar with seed' (default) | 'Global stream'

Source of random number stream, specified as one of the following:

• 'mt19937ar with seed' — The object uses the mt19937ar algorithm for normally
distributed random number generation. Calling the reset function resets the filters
and reinitializes the random number stream to the value of the Seed property.

• 'Global stream' — The object uses the current global random number stream for
normally distributed random number generation. Calling the reset function resets
only the filters.

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative numeric scalar

Initial seed of mt19937ar random number stream, specified as a nonnegative numeric
scalar.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'. When calling
the reset function, the seed reinitializes the mt19937ar random number stream.
Data Types: double

 nrTDLChannel System object

2-33

NormalizeChannelOutputs — Normalize channel outputs by the number of
receive antennas
true (default) | false

Normalize channel outputs by the number of receive antennas, specified as true or
false.
Data Types: logical

Usage

Syntax
signalOut = tdl(signalIn)
[signalOut,pathGains] = tdl(signalIn)
[signalOut,pathGains,sampleTimes] = tdl(signalIn)

Description
signalOut = tdl(signalIn) sends the input signal through a TDL MIMO fading
channel and returns the channel-impaired signal.

[signalOut,pathGains] = tdl(signalIn) also returns the MIMO channel path
gains of the underlying fading process.

[signalOut,pathGains,sampleTimes] = tdl(signalIn) also returns the sample
times of the channel snapshots of the path gains.

Input Arguments
signalIn — Input signal
complex scalar | vector | NS-by-NT matrix

Input signal, specified as a complex scalar, vector, or NS-by-NT matrix, where:

• NS is the number of samples.
• NT is the number of transmit antennas.

2 System Objects — Alphabetical List

2-34

Data Types: single | double
Complex Number Support: Yes

Output Arguments
signalOut — Output signal
complex scalar | vector | NS-by-NR matrix

Output signal, returned as a complex scalar, vector, or NS-by-NR matrix, where:

• NS is the number of samples.
• NR is the number of receive antennas.

The output signal data type is of the same precision as the input signal data type.
Data Types: single | double
Complex Number Support: Yes

pathGains — MIMO channel path gains of fading process
NS-by-NP-by-NT-by-NR complex matrix

MIMO channel path gains of the fading process, returned as an NS-by-NP-by-NT-by-NR
complex matrix, where:

• NS is the number of samples.
• NP is the number of paths, specified by the length of the PathDelays property of tdl.
• NT is the number of transmit antennas.
• NR is the number of receive antennas.

The path gains data type is of the same precision as the input signal data type.
Data Types: single | double
Complex Number Support: Yes

sampleTimes — Sample times of channel snapshots
NS-by-1 column vector of real numbers

Sample times of the channel snapshots of the path gains, returned as an NS-by-1 column
vector of real numbers. NS is the first dimension of pathGains that corresponds to the
number of samples.
Data Types: double

 nrTDLChannel System object

2-35

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to nrTDLChannel
info Get characteristic information about link-level MIMO fading channel
getPathFilters Get path filter impulse response for link-level MIMO fading channel

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Transmission over MIMO Channel Model with Delay Profile TDL

Display waveform spectrum received through a Tapped Delay Line (TDL) multi-input/
multi-output (MIMO) channel model from TR 38.901 Section 7.7.2 using an
nrTDLChannel System object.

Define the channel configuration structure using an nrTDLChannel System object. Use
delay profile TDL-C from TR 38.901 Section 7.7.2, a delay spread of 300 ns, and UT
velocity of 30 km/h:

v = 30.0; % UT velocity in km/h
fc = 4e9; % carrier frequency in Hz
c = physconst('lightspeed'); % speed of light in m/s
fd = (v*1000/3600)/c*fc; % UT max Doppler frequency in Hz

tdl = nrTDLChannel;
tdl.DelayProfile = 'TDL-C';

2 System Objects — Alphabetical List

2-36

tdl.DelaySpread = 300e-9;
tdl.MaximumDopplerShift = fd;

Create a random waveform of 1 subframe duration with 1 antenna.

SR = 30.72e6;
T = SR * 1e-3;
tdl.SampleRate = SR;
tdlinfo = info(tdl);
Nt = tdlinfo.NumTransmitAntennas;

txWaveform = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel.

rxWaveform = tdl(txWaveform);

Plot the received waveform spectrum.

analyzer = dsp.SpectrumAnalyzer('SampleRate',tdl.SampleRate);
analyzer.Title = ['Received Signal Spectrum ' tdl.DelayProfile];
analyzer(rxWaveform);

 nrTDLChannel System object

2-37

Plot Path Gains for TDL-E Delay Profile with SISO

Plot the path gains of a Tapped Delay Line (TDL) single-input/single-output (SISO)
channel using an nrTDLChannel System object.

Configure a channel with delay profile TDL-E from TR 38.901 Section 7.7.2. Set the
maximum Doppler shift to 70 Hz and enable path gain output

tdl = nrTDLChannel;
tdl.SampleRate = 500e3;
tdl.MaximumDopplerShift = 70;
tdl.DelayProfile = 'TDL-E';

2 System Objects — Alphabetical List

2-38

Configure transmit and receive antenna arrays for SISO operation.

tdl.NumTransmitAntennas = 1;
tdl.NumReceiveAntennas = 1;

Create a dummy input signal. The length of the input determines the time samples of the
generated path gain.

in = zeros(1000,tdl.NumTransmitAntennas);

To generate the path gains, call the channel on the input. Plot the results.

[~, pathGains] = tdl(in);
mesh(10*log10(abs(pathGains)));
view(26,17); xlabel('Channel Path');
ylabel('Sample (time)'); zlabel('Magnitude (dB)');

 nrTDLChannel System object

2-39

Transmission Over TDL-D Channel Model with Cross-Polar Antennas

Display waveform spectrum received through a Tapped Delay Line (TDL) channel model
with delay profile TDL-D from TR 38.901 Section 7.7.2 and 4-by-2 high correlation cross-
polar antennas as specified in TS 36.101 Annex B.2.3A.3.

Configure cross-polar antennas according to TS 36.101 Annex B.2.3A.3 4x2 high
correlation.

tdl = nrTDLChannel;
tdl.NumTransmitAntennas = 4;

2 System Objects — Alphabetical List

2-40

tdl.DelayProfile = 'TDL-D';
tdl.DelaySpread = 10e-9;
tdl.KFactorScaling = true;
tdl.KFactor = 7.0;
tdl.MIMOCorrelation = 'High';
tdl.Polarization = 'Cross-Polar';

Create a random waveform of 1 subframe duration with 4 antennas.

SR = 1.92e6;
T = SR * 1e-3;
tdl.SampleRate = SR;
tdlinfo = info(tdl);
Nt = tdlinfo.NumTransmitAntennas;

txWaveform = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel.

rxWaveform = tdl(txWaveform);

Plot the received waveform spectrum.

analyzer = dsp.SpectrumAnalyzer('SampleRate',tdl.SampleRate);
analyzer.Title = ['Received Signal Spectrum ' tdl.DelayProfile];
analyzer(rxWaveform);

 nrTDLChannel System object

2-41

Transmission Over TDL Channel Model with Custom Delay Profile

Transmit waveform through a Tapped Delay Line (TDL) channel model from TR 38.901
Section 7.7.2 with customized delay profile.

Define the channel configuration structure using an nrTDLChannel System object.
Customize the delay profile with two taps.

• Tap 1: Rician with average power 0 dB, K-factor 10 dB, and zero delay.
• Tap 2: Rayleigh with average power -5 dB, and 45 ns path delay using TDL-D.

2 System Objects — Alphabetical List

2-42

tdl = nrTDLChannel;
tdl.NumTransmitAntennas = 1;
tdl.DelayProfile = 'Custom';
tdl.FadingDistribution = 'Rician';
tdl.KFactorFirstTap = 10.0;
tdl.PathDelays = [0.0 45e-9];
tdl.AveragePathGains = [0.0 -5.0];

Create a random waveform of 1 subframe duration with 1 antenna.

SR = 30.72e6;
T = SR * 1e-3;
tdl.SampleRate = SR;
tdlinfo = info(tdl);
Nt = tdlinfo.NumTransmitAntennas;

txWaveform = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel.

rxWaveform = tdl(txWaveform);

References
[1] 3GPP TR 38.901. “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd

Generation Partnership Project; Technical Specification Group Radio Access
Network.

[2] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User
Equipment (UE) radio transmission and reception.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

[3] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station
(BS) radio transmission and reception.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

 nrTDLChannel System object

2-43

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
nrPerfectChannelEstimate | nrPerfectTimingEstimate

System Objects
comm.MIMOChannel | nrCDLChannel

Introduced in R2018b

2 System Objects — Alphabetical List

2-44

